Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2522: 145-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125748

RESUMO

Homologous recombination-based gene targeting is a powerful and classic reverse genetics approach to precisely elucidate in vivo gene functions in the organisms across all three domains of life. Gene function studies in Archaea, particularly for those flourishing in inhospitable natural environments that are anaerobic, usually hot, and acidic, have been a great challenge; however, this situation was recently overturned with the increasing availability of genetic manipulation systems in several cultivable archaeal species. In the present chapter, we describe a detailed procedure to rapidly generate gene disruption mutants in the hyperthermophilic crenarchaeon Sulfolobus islandicus via a recently developed Microhomology-Mediated Gene Inactivation (MMGI) approach. We highlight crucial experimental details required to be carefully considered when using the MMGI approach for genetic manipulations. We hope this highly reproducible procedure can supplement existing genetic tools for studying the biology of archaeal order Sulfolobales.


Assuntos
Sulfolobus , Archaea/genética , Inativação Gênica , Marcação de Genes , Técnicas Genéticas , Sulfolobus/genética
2.
mBio ; 10(4)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455649

RESUMO

Rediscovery of the ancient evolutionary relationship between archaea and eukaryotes has revitalized interest in archaeal cell biology. Key to the understanding of archaeal cells is the surface layer (S-layer), which is commonly found in Archaea but whose in vivo function is unknown. Here, we investigate the architecture and cellular roles of the S-layer in the hyperthermophilic crenarchaeon Sulfolobus islandicus Electron micrographs of mutant cells lacking slaA or both slaA and slaB confirm the absence of the outermost layer (SlaA), whereas cells with intact or partially or completely detached SlaA are observed for the ΔslaB mutant. We experimentally identify a novel S-layer-associated protein, M164_1049, which does not functionally replace its homolog SlaB but likely assists SlaB to stabilize SlaA. Mutants deficient in the SlaA outer layer form large cell aggregates, and individual cell size varies, increasing significantly up to six times the diameter of wild-type cells. We show that the ΔslaA mutant cells exhibit more sensitivity to hyperosmotic stress but are not reduced to wild-type cell size. The ΔslaA mutant contains aberrant chromosome copy numbers not seen in wild-type cells, in which the cell cycle is tightly regulated. Together, these data suggest that the lack of SlaA results in either cell fusion or irregularities in cell division. Our studies show the key physiological and cellular functions of the S-layer in this archaeal cell.IMPORTANCE The S-layer is considered to be the sole component of the cell wall in Sulfolobales, a taxonomic group within the Crenarchaeota whose cellular features have been suggested to have a close relationship to the last archaea-eukaryote common ancestor. In this study, we genetically dissect how the two previously characterized S-layer genes as well as a newly identified S-layer-associated protein-encoding gene contribute to the S-layer architecture in Sulfolobus We provide genetic evidence for the first time showing that the slaA gene is a key cell morphology determinant and may play a role in Sulfolobus cell division or/and cell fusion.


Assuntos
Ciclo Celular/genética , Glicoproteínas de Membrana/metabolismo , Sulfolobus/genética , Evolução Biológica , Temperatura Alta , Glicoproteínas de Membrana/genética , Sulfolobus/fisiologia , Sulfolobus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA