Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1332895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694937

RESUMO

Background: More than 700 million people worldwide suffer from diseases of the pancreas, such as diabetes, pancreatitis and pancreatic cancer. Often dysregulation of potassium (K+) channels, co-transporters and pumps can promote development and progression of many types of these diseases. The role of K+ transport system in pancreatic cell homeostasis and disease development remains largely unexplored. Potassium isotope analysis (δ41K), however, might have the potential to detect minute changes in metabolic processes relevant for pancreatic diseases. Methods: We assessed urinary K isotope composition in a case-control study by measuring K concentrations and δ41K in spot urines collected from patients diagnosed with pancreatic cancer (n=18), other pancreas-related diseases (n=14) and compared those data to healthy controls (n=16). Results: Our results show that urinary K+ levels for patients with diseased pancreas (benign and pancreatic cancer) are significantly lower than the healthy controls. For δ41K, the values tend to be higher for individuals with pancreatic cancer (mean δ41K = -0.58 ± 0.33‰) than for healthy individuals (mean δ41K = -0.78 ± 0.19‰) but the difference is not significant (p=0.08). For diabetics, urinary K+ levels are significantly lower (p=0.03) and δ41K is significantly higher (p=0.009) than for the healthy controls. These results suggest that urinary K+ levels and K isotopes can help identify K disturbances related to diabetes, an associated factors of all-cause mortality for diabetics. Conclusion: Although the K isotope results should be considered exploratory and hypothesis-generating and future studies should focus on larger sample size and δ41K analysis of other K-disrupting diseases (e.g., chronic kidney disease), our data hold great promise for K isotopes as disease marker.


Assuntos
Diabetes Mellitus , Neoplasias Pancreáticas , Potássio , Humanos , Neoplasias Pancreáticas/urina , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Idoso , Potássio/urina , Diabetes Mellitus/urina , Diabetes Mellitus/metabolismo , Adulto , Pâncreas/metabolismo , Isótopos/urina
2.
Sci Adv ; 9(28): eadg8993, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436980

RESUMO

A general method of separating isotopes by centrifuging dissolved chemical compounds in a liquid is introduced. This technique can be applied to almost all elements and leads to large separation factors. The method has been demonstrated in several isotopic systems including Ca, Mo, O, and Li with single-stage selectivities of 1.046 to 1.067 per neutron mass difference (e.g., 1.43 in 40Ca/48Ca), which are beyond the capabilities of various conventional methods. Equations are derived to model the process, and the results agree with those of the experiments. The scalability of the technique has been demonstrated by a three-stage enrichment of 48Ca with a total 40Ca/48Ca selectivity of 2.43, and the scalability is more broadly supported through analogies to gas centrifuge, whereby countercurrent centrifugation can further multiply the separation factor by 5 to 10 times per stage in a continuous process. Optimal centrifuge conditions and solutions can achieve both high-throughput and highly efficient isotope separation.

3.
Rapid Commun Mass Spectrom ; 37(13): e9526, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37130042

RESUMO

RATIONALE: The boron (B) memory effect is a concern for B isotope analysis in inductively-coupled plasma mass spectrometry and a potential cause of poor data comparability between laboratories. It is widely assumed that the memory resides in water droplets on the surface of the spray chamber. However, even without the use of the spray chamber, background subtractions are still required to generate accurate data, therefore additional causes for the memory effect exist, which are investigated here. METHODS: Different parts of the mass spectrometer were examined to pinpoint the source of a particularly high B background. After identifying the torch as the source of the background, different parts of the torch were soaked in dilute nitric acid, which was analyzed for B over time. RESULTS: B was leached out of the tip of the outer quartz tube of the torch in a fashion similar to borosilicate glass, which suggests the incorporation of B into the silica structure of the torch at high temperatures. Running 3% nitric acid washes effectively reduces the background. B background compositions change based on the solutions run beforehand, therefore different blank subtraction methods generate systematic differences. A new background subtraction method that utilizes B isotope ratios improved the precision by up to 0.14‰. The addition of a water wash step before sample elution led to smaller eluent volumes and improved matrix matching without causing a B breakthrough. CONCLUSIONS: An important part of the B memory derives from the torch glass, which incorporates B from sample solutions at high temperatures. Multiple nitric acid washes, matrix matching, blank subtraction, and standard sample bracketing generated accurate B isotope analyses with background/signal ratios as high as 10%, without the need for hazardous chemicals as washes. B isotope values of two sediment standards that represent average post-Archean continental crust were reported.


Assuntos
Boro , Ácido Nítrico , Boro/análise , Isótopos/análise , Espectrometria de Massas/métodos , Padrões de Referência
4.
Metallomics ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33877364

RESUMO

Breast, prostate, and pancreatic cancers alter the zinc (Zn) metabolism. Combined analyses of urinary Zn concentrations [Zn] and Zn stable isotope compositions (δ66Zn) may provide a non-invasive approach for tracing malignancy-induced Zn dyshomeostasis. In this study, we measured [Zn] and δ66Zn in urine from prostate (n = 22), breast (n = 16), and from women with benign breast disease (n = 14) and compared those with age-matched healthy controls (22-49 years or 50+ years) and published data for pancreatic cancer (n = 17). Our results show that cancer-induced changes are reflected in higher urinary [Zn] and lower urinary δ66Zn for pancreatic and prostate cancer and benign breast disease when compared with healthy controls. For prostate cancer, the progression of low [Zn] and high δ66Zn for patients of low-risk disease toward high [Zn] and low δ66Zn for the higher risk patients demonstrates that [Zn] and δ66Zn in urine could serve as a reliable prognostic tool. Urinary excretion of isotopically light Zn by patients with prostatic and pancreatic cancer is probably the result of increased reactive oxygen species in cancerous cells, which limits the scavenging of hydroxyl radicals and thus facilitates the oxidation of metalloproteins with sulfur-rich ligands. Urine from breast cancer patients shows undistinguishable δ66Zn to healthy controls, implying that the expression of metalloproteins with sulfur-rich ligands is stronger in breast cancer tissues. In conclusion, urinary δ66Zn may provide a non-invasive diagnostic tool for pancreatic cancer and support disease prognosis for prostate cancer. These findings should translate to comprehensive transverse and longitudinal cohort studies in future.


Assuntos
Biomarcadores Tumorais/urina , Neoplasias da Mama/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Neoplasias da Próstata/diagnóstico , Isótopos de Zinco/urina , Adulto , Neoplasias da Mama/urina , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/urina , Prognóstico , Neoplasias da Próstata/urina , Adulto Jovem
5.
Front Med (Lausanne) ; 8: 746532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127740

RESUMO

Zinc (Zn) accumulates in breast cancer tumors compared to adjacent healthy tissue. Clinical samples of breast cancer tissue show light Zn isotopic compositions (δ66Zn) relative to healthy tissue. The underlying mechanisms causing such effects are unknown. To investigate if the isotopic discrimination observed for in vivo breast cancer tissue samples can be reproduced in vitro, we report isotopic data for Zn uptake-efflux experiments using a human breast cancer cell line. MDA-MB-231 cell line was used as a model for triple receptor negative breast cancer. We determined Zn isotope fractionation for Zn cell uptake (Δ66Znuptake) and cell efflux (Δ66Znefflux) using a drip-flow reactor to enable comparison with the in vivo environment. The MDA-MB-231 cell line analyses show Zn isotopic fractionations in an opposite direction to those observed for in vivo breast cancer tissue. Uptake of isotopically heavy Zn (Δ66Znuptake = +0.23 ± 0.05‰) is consistent with transport via Zn transporters (ZIPs), which have histidine-rich binding sites. Zinc excreted during efflux is isotopically lighter than Zn taken up by the cells (Δ66Znefflux = -0.35 ± 0.06‰). The difference in Zn isotope fractionation observed between in vitro MDA-MB-231 cell line experiments and in vivo breast tissues might be due to differences in Zn transporter levels or intercellular Zn storage (endoplasmic reticulum and/or Zn specific vesicles); stromal cells, such as fibroblasts and immune cells. Although, additional experiments using other human breast cancer cell lines (e.g., MCF-7, BT-20) with varying Zn protein characteristics are required, the results highlight differences between in vitro and in vivo Zn isotope fractionation.

6.
Metallomics ; 12(5): 752-757, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32211672

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer. Its high mortality rate is attributed largely to the difficulty of early diagnosis. Analysis of urine is an excellent non-invasive approach to trace changes in biochemical reactions due to cancer development. Here we show remarkable differences in concentration of several essential metals: significantly lower levels of urinary calcium and magnesium and increased levels of copper and zinc in PDAC when compared to healthy controls, and demonstrate that a combined analysis of these essential metals are accurate indicators (sensitivity = 99.5%) for metal dyshomeostasis in PDAC. In addition, natural stable zinc isotope composition (δ66/64Zn) in urine reveals the preferential excretion of isotopically light zinc in PDAC (δ66/64Znmedian = -0.15‰) compared to healthy controls (δ66/64Znmedian = +0.02‰), likely supporting the dysregulation of metalloproteins. These findings demonstrate for the first time that metallomics is a promising approach for discovery of biomarkers for detection of patients with PDAC, completely non-invasively, using urine samples.


Assuntos
Biomarcadores Tumorais/urina , Carcinoma Ductal Pancreático/diagnóstico , Metais/urina , Neoplasias Pancreáticas/diagnóstico , Carcinoma Ductal Pancreático/urina , Estudos de Casos e Controles , Humanos , Neoplasias Pancreáticas/urina , Prognóstico
7.
Proc Natl Acad Sci U S A ; 112(5): 1292-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605900

RESUMO

Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe-Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface.

8.
Metallomics ; 7(1): 112-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25489714

RESUMO

An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Cobre/análise , Isótopos de Zinco/análise , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Mama/química , Mama/metabolismo , Neoplasias da Mama/metabolismo , Cobre/sangue , Cobre/metabolismo , Feminino , Humanos , Masculino , Isótopos de Zinco/sangue , Isótopos de Zinco/metabolismo
9.
Nature ; 497(7447): 43-5, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23636391
10.
Science ; 338(6110): 1040-1, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23180854
11.
Nature ; 465(7299): 767-70, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20535208

RESUMO

The meaning of the age of the Earth defined by lead isotopes has long been unclear. Recently it has been proposed that the age of the Earth deduced from lead isotopes reflects volatile loss to space at the time of the Moon-forming giant impact rather than partitioning into metallic liquids during protracted core formation. Here we show that lead partitioning into liquid iron depends strongly on carbon content and that, given a content of approximately 0.2% carbon, experimental and isotopic data both provide evidence of strong partitioning of lead into the core throughout the Earth's accretion. Earlier conclusions that lead is weakly partitioned into iron arose from the use of carbon-saturated (about 5% C) iron alloys. The lead isotopic age of the Earth is therefore consistent with partitioning into the core and with no significant late losses of moderately volatile elements to space during the giant impact.

12.
Science ; 325(5936): 44-5, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19574377
14.
Philos Trans A Math Phys Eng Sci ; 366(1883): 4163-81, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18826916

RESUMO

New W isotope data for lunar metals demonstrate that the Moon formed late in isotopic equilibrium with the bulk silicate Earth (BSE). On this basis, lunar Sr isotope data are used to define the former composition of the Earth and hence the Rb-Sr age of the Moon, which is 4.48+/-0.02Ga, or 70-110Ma (million years) after the start of the Solar System. This age is significantly later than had been deduced from W isotopes based on model assumptions or isotopic effects now known to be cosmogenic. The Sr age is in excellent agreement with earlier estimates based on the time of lunar Pb loss and the age of the early lunar crust (4.46+/-0.04Ga). Similar ages for the BSE are recorded by xenon and lead-lead, providing evidence of catastrophic terrestrial degassing, atmospheric blow-off and significant late core formation accompanying the ca 100Ma giant impact. Agreement between the age of the Moon based on the Earth's Rb/Sr and the lead-lead age of the Moon is consistent with no major losses of moderately volatile elements from the Earth during the giant impact. The W isotopic composition of the BSE can be explained by end member models of (i) gradual accretion with a mean life of roughly 35Ma or (ii) rapid growth with a mean life of roughly 10Ma, followed by a significant hiatus prior to the giant impact. The former assumes that approximately 60 per cent of the incoming metal from impactors is added directly to the core during accretion. The latter includes complete mixing of all the impactor material into the BSE during accretion. The identical W isotopic composition of the Moon and the BSE limits the amount of material that can be added as a late veneer to the Earth after the giant impact to less than 0.3+/-0.3 per cent of ordinary chondrite or less than 0.5+/-0.6 per cent CI carbonaceous chondrite based on their known W isotopic compositions. Neither of these on their own is sufficient to explain the inventories of both refractory siderophiles such as platinum group elements and rhenium, and volatiles such as sulphur, carbon and water.


Assuntos
Evolução Planetária , Lua , Planeta Terra , Meteoroides , Sistema Solar
15.
Nature ; 452(7185): 336-9, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18354479

RESUMO

Small isotopic differences in the atomic abundance of neodymium-142 (142Nd) in silicate rocks represent the time-averaged effect of decay of formerly live samarium-146 (146Sm) and provide constraints on the timescales and mechanisms by which planetary mantles first differentiated. This chronology, however, assumes that the composition of the total planet is identical to that of primitive undifferentiated meteorites called chondrites. The difference in the 142Nd/144Nd ratio between chondrites and terrestrial samples may therefore indicate very early isolation (<30 Myr from the formation of the Solar System) of the upper mantle or a slightly non-chondritic bulk Earth composition. Here we present high-precision 142Nd data for 16 martian meteorites and show that Mars also has a non-chondritic composition. Meteorites belonging to the shergottite subgroup define a planetary isochron yielding an age of differentiation of 40 +/- 18 Myr for the martian mantle. This isochron does not pass through the chondritic reference value (100 x epsilon(142)Nd = -21 +/- 3; 147Sm/144Nd = 0.1966). The Earth, Moon and Mars all seem to have accreted in a portion of the inner Solar System with approximately 5 per cent higher Sm/Nd ratios than material accreted in the asteroid belt. Such chemical heterogeneities may have arisen from sorting of nebular solids or from impact erosion of crustal reservoirs in planetary precursors. The 143Nd composition of the primitive mantle so defined by 142Nd is strikingly similar to the putative endmember component 'FOZO' characterized by high 3He/4He ratios.

16.
Nature ; 450(7168): 356-7, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18004368
17.
Nature ; 447(7148): 1102-6, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17597757

RESUMO

Small isotopic differences between the silicate minerals in planets may have developed as a result of processes associated with core formation, or from evaporative losses during accretion as the planets were built up. Basalts from the Earth and the Moon do indeed appear to have iron isotopic compositions that are slightly heavy relative to those from Mars, Vesta and primitive undifferentiated meteorites (chondrites). Explanations for these differences have included evaporation during the 'giant impact' that created the Moon (when a Mars-sized body collided with the young Earth). However, lithium and magnesium, lighter elements with comparable volatility, reveal no such differences, rendering evaporation unlikely as an explanation. Here we show that the silicon isotopic compositions of basaltic rocks from the Earth and the Moon are also distinctly heavy. A likely cause is that silicon is one of the light elements in the Earth's core. We show that both the direction and magnitude of the silicon isotopic effect are in accord with current theory based on the stiffness of bonding in metal and silicate. The similar isotopic composition of the bulk silicate Earth and the Moon is consistent with the recent proposal that there was large-scale isotopic equilibration during the giant impact. We conclude that Si was already incorporated as a light element in the Earth's core before the Moon formed.

18.
Environ Sci Technol ; 40(12): 3787-93, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16830543

RESUMO

Iron isotope fractionation during dissolution of goethite (alpha-FeOOH) was studied in laboratory batch experiments. Proton-promoted (HCl), ligand-controlled (oxalate dark), and reductive (oxalate light) dissolution mechanisms were compared in order to understand the behavior of iron isotopes during natural weathering reactions. Multicollector ICP-MS was used to measure iron isotope ratios of dissolved iron in solution. The influence of kinetic and equilibrium isotope fractionation during different time scales of dissolution was investigated. Proton-promoted dissolution did not cause iron isotope fractionation, concurrently demonstrating the isotopic homogeneity of the goethite substrate. In contrast, both ligand-controlled and reductive dissolution of goethite resulted in significant iron isotope fractionation. The kinetic isotope effect, which caused an enrichment of light isotopes in the early dissolved fractions, was modeled with an enrichment factor for the 57Fe/ 54Fe ratio of -2.6 per thousandth between reactive surface sites and solution. Later dissolved fractions of the ligand-controlled experiments exhibit a reverse trend with a depletion of light isotopes of approximately 0.5 per thousandth in solution. We interpret this as an equilibrium isotope effect between Fe(III)-oxalate complexes in solution and the goethite surface. In conclusion, different dissolution mechanisms cause diverse iron isotope fractionation effects and likely influence the iron isotope signature of natural soil and weathering environments.


Assuntos
Compostos de Ferro/química , Isótopos de Ferro/análise , Fracionamento Químico , Ácido Clorídrico/química , Cinética , Ligantes , Minerais , Modelos Teóricos , Oxalatos/química , Oxirredução , Prótons
19.
Nature ; 439(7074): 314-7, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16421568

RESUMO

Ocean island basalts are generally thought to be the surface expression of mantle plumes, but the nature of the components in the source regions of such mantle plumes is a subject of long-standing debate. The lavas erupted at Hawaii have attracted particular attention, as it has been proposed that coupled 186Os and 187Os anomalies reflect interaction with the Earth's metallic core. It has recently been suggested, however, that such variations could also result from addition of oceanic ferromanganese sediments to the mantle source of these lavas. Here we show that Hawaiian picrites with osmium isotope anomalies also exhibit pronounced thallium isotope variations, which are coupled with caesium/thallium ratios that extend to values much lower than commonly observed for mantle-derived rocks. This correlation cannot be created by admixing of core material, and is best explained by the addition of ferromanganese sediments into the Hawaii mantle source region. However, the lack of correlation between thallium and osmium isotopes and the high thallium/osmium ratios of ferromanganese sediments preclude a sedimentary origin for the osmium isotope anomalies, and leaves core-mantle interaction as a viable explanation for the osmium isotope variations of the Hawaiian picrites.

20.
Science ; 310(5754): 1671-4, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16308422

RESUMO

The use of hafnium-tungsten chronometry to date the Moon is hampered by cosmogenic tungsten-182 production mainly by neutron capture of tantalum-181 at the lunar surface. We report tungsten isotope data for lunar metals, which contain no 181Ta-derived cosmogenic 182W. The data reveal differences in indigenous 182W/184W of lunar mantle reservoirs, indicating crystallization of the lunar magma ocean 4.527 +/- 0.010 billion years ago. This age is consistent with the giant impact hypothesis and defines the completion of the major stage of Earth's accretion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA