Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39091763

RESUMO

Sustained attention, the ability to focus on a stimulus or task over extended periods, is crucial for higher level cognition, and is impaired in individuals diagnosed with neuropsychiatric and neurodevelopmental disorders, including attention-deficit/hyperactivity disorder, schizophrenia, and depression. Translational tasks like the rodent continuous performance test (rCPT) can be used to study the cellular mechanisms underlying sustained attention. Accumulating evidence points to a role for the prelimbic cortex (PrL) in sustained attention, as electrophysiological single unit and local field (LFPs) recordings reflect changes in neural activity in the PrL in mice performing sustained attention tasks. While the evidence correlating PrL electrical activity with sustained attention is compelling, limitations inherent to electrophysiological recording techniques, including low sampling in single unit recordings and source ambivalence for LFPs, impede the ability to fully resolve the cellular mechanisms in the PrL that contribute to sustained attention. In vivo endoscopic calcium imaging using genetically encoded calcium sensors in behaving animals can address these questions by simultaneously recording up to hundreds of neurons at single cell resolution. Here, we used in vivo endoscopic calcium imaging to record patterns of neuronal activity in PrL neurons using the genetically encoded calcium sensor GCaMP6f in mice performing the rCPT at three timepoints requiring differing levels of cognitive demand and task proficiency. A higher proportion of PrL neurons were recruited during correct responses in sessions requiring high cognitive demand and task proficiency, and mice intercalated non-responsive-disengaged periods with responsive-engaged periods that resemble attention lapses. During disengaged periods, the correlation of calcium activity between PrL neurons was higher compared to engaged periods, suggesting a neuronal network state change during attention lapses in the PrL. Overall, these findings illustrate that cognitive demand, task proficiency, and task engagement differentially recruit activity in a subset of PrL neurons during sustained attention.

2.
bioRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39149404

RESUMO

Apolipoprotein E (ApoE) is a protein that is important for lipid storage, transport, and metabolism. APOE gene variants are associated with Alzheimer's disease (AD), as well as attentional function in healthy humans. Previous research has shown that Apoe transcription is increased following stimulation of the pathway between the locus coeruleus (LC) and frontal cortex (FC) in mice. This result suggests that Apoe may affect attentional function by virtue of its expression in circuits that control attention. Does Apoe causally regulate attention, or is its expression simply a byproduct of neuronal activity in the LC and FC? To answer this question, we synthetically induced Apoe transcription in the FC of male and female mice, and subsequently tested their ability to learn a touchscreen-based rodent version of the continuous performance test of sustained attention (the rCPT). We found that increased Apoe transcription impaired performance when attentional demand was increased in male mice, while in female mice, increased Apoe transcription significantly accelerated rCPT learning. We further found that this increase in Apoe transcription affected subsequent anxiety-like behavior and cellular activity in the FC in a sex-dependent manner. The results of this study provide insight into how Apoe causally regulates translationally relevant behaviors in rodent models.

3.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091890

RESUMO

Deficits in attention are common across a range of neuropsychiatric disorders. A multitude of brain regions, including the frontal cortex (FC) and locus coeruleus (LC), have been implicated in attention. Regulators of these brain regions at the molecular level are not well understood, but might elucidate underlying mechanisms of disorders with attentional deficits. To probe this, we used chemogenetic stimulation of neurons in the LC with axonal projections to the FC, and subsequent bulk RNA-sequencing from the mouse FC. We found that stimulation of this circuit caused an increase in transcription of the Apoe gene. To investigate cell type-specific expression of Apoe in the FC, we used a dual-virus approach to express either the excitatory DREADD receptor hM3Dq in LC neurons with projections to the FC, or a control virus, and found that increases in Apoe expression in the FC following depolarization of LC inputs is enriched in GABAergic neurons in a sex-dependent manner. The results of these experiments yield insights into how Apoe expression affects function in cortical microcircuits that are important for attention-guided behavior, and point to interneuron-specific expression of Apoe as a potential target for the amelioration of attention symptoms in disorders such as attention-deficit hyperactivity disorder (ADHD), schizophrenia, and Alzheimer's disease (AD).

4.
Elife ; 122024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037771

RESUMO

Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6-11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.


Assuntos
Tomada de Decisões , Hipocampo , Córtex Pré-Frontal , Ritmo Teta , Córtex Pré-Frontal/fisiologia , Tomada de Decisões/fisiologia , Ritmo Teta/fisiologia , Hipocampo/fisiologia , Animais , Masculino , Memória/fisiologia , Interfaces Cérebro-Computador , Humanos , Tálamo/fisiologia , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA