Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 25(9): 104848, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36148432

RESUMO

Species composition in high-alpine ecosystems is a useful indicator for monitoring climatic and environmental changes at the upper limits of habitable environments. We used environmental DNA (eDNA) analysis to document the breadth of high-alpine biodiversity present on Earth's highest mountain, Mt. Everest (8,849 m a.s.l.) in Nepal's Khumbu region. In April-May 2019, we collected eDNA from ten ponds and streams between 4,500 m and 5,500 m. Using multiple sequencing and bioinformatic approaches, we identified taxa from 36 phyla and 187 potential orders across the Tree of Life in Mt. Everest's high-alpine and aeolian ecosystem. These organisms, all recorded above 4,500 m-an elevational belt comprising <3% of Earth's land surface-represents ∼16% of global taxonomic order estimates. Our eDNA inventory will aid future high-Himalayan biomonitoring and retrospective molecular studies to assess changes over time as climate-driven warming, glacial melt, and anthropogenic influences reshape this rapidly transforming world-renowned ecosystem.

2.
Appl Environ Microbiol ; 75(3): 735-47, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19074608

RESUMO

Fumarolic activity supports the growth of mat-like photoautotrophic communities near the summit (at 6,051 m) of Socompa Volcano in the arid core of the Andes mountains. These communities are isolated within a barren, high-elevation landscape where sparse vascular plants extend to only 4,600 m. Here, we combine biogeochemical and molecular-phylogenetic approaches to characterize the bacterial and eucaryotic assemblages associated with fumarolic and nonfumarolic grounds on Socompa. Small-subunit rRNA genes were PCR amplified, cloned, and sequenced from two fumarolic soil samples and two reference soil samples, including the volcanic debris that covers most of the mountain. The nonfumarolic, dry, volcanic soil was similar in nutrient status to the most extreme Antarctic Dry Valley or Atacama Desert soils, hosted relatively limited microbial communities dominated by Actinobacteria and Fungi, and contained no photoautotrophs. In contrast, modest fumarolic inputs were associated with elevated soil moisture and nutrient levels, the presence of chlorophyll a, and (13)C-rich soil organic carbon. Moreover, this soil hosted diverse photoautotroph-dominated assemblages that contained novel lineages and exhibited structure and composition comparable to those of a wetland near the base of Socompa (3,661-m elevation). Fumarole-associated eucaryotes were particularly diverse, with an abundance of green algal lineages and a novel clade of microarthropods. Our data suggest that volcanic degassing of water and (13)C-rich CO(2) sustains fumarole-associated primary producers, leading to a complex microbial ecosystem within this otherwise barren landscape. Finally, we found that human activities have likely impacted the fumarolic soils and that fumarole-supported photoautotrophic communities may be exceptionally sensitive to anthropogenic disturbance.


Assuntos
Artrópodes/classificação , Bactérias/classificação , Biodiversidade , Eucariotos/classificação , Fumaratos/metabolismo , Fungos/classificação , Microbiologia do Solo , Animais , Artrópodes/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bolívia , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/genética , Eucariotos/isolamento & purificação , Fungos/genética , Fungos/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
3.
Oecologia ; 144(2): 245-56, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15891822

RESUMO

If snow cover in alpine environments were reduced through climatic warming, plants that are normally protected by snow-lie in winter would become exposed to greater extremes of temperature and solar radiation. We examined the annual course of frost resistance of species of native alpine plants from southern New Zealand that are normally buried in snowbanks over winter (Celmisia haastii and Celmisia prorepens) or in sheltered areas that may accumulate snow (Hebe odora) and other species, typical of more exposed areas, that are relatively snow-free (Celmisia viscosa, Poa colensoi, Dracophyllum muscoides). The frost resistance of these principal species was in accord with habitat: those from snowbanks or sheltered areas showed the least frost resistance, whereas species from exposed areas had greater frost resistance throughout the year. P. colensoi had the greatest frost resistance (-32.5 degrees C). All the principal species showed a rapid increase in frost resistance from summer to early winter (February-June) and maximum frost resistance in winter (July-August). The loss of resistance in late winter to early summer (August-December) was most rapid in P. colensoi and D. muscoides. Seasonal frost resistance of the principal species was more strongly related to daylength than to temperature, although all species except C. viscosa were significantly related to temperature when the influence of daylength was accounted for. Measurements of chlorophyll fluorescence indicated that photosynthetic efficiency of the principal species declined with increasing daylength. Levels of frost resistance of the six principal alpine plant species, and others measured during the growing season, were similar to those measured in tropical alpine areas and somewhat more resistant than those recorded in alpine areas of Europe. The potential for frost damage was greatest in spring. The current relationship of frost resistance with daylength is sufficient to prevent damage at any time of year. While warmer temperatures might lower frost resistance, they would also reduce the incidence of frosts, and the incidence of frost damage is unlikely to be altered. The relationship of frost resistance with daylength and temperature potentially provides a means of predicting the responses of alpine plants in response to global warming.


Assuntos
Adaptação Fisiológica/fisiologia , Efeito Estufa , Fenômenos Fisiológicos Vegetais , Neve , Luz Solar , Temperatura , Altitude , Geografia , Nova Zelândia , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA