Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Diagn ; 25(8): 602-610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236547

RESUMO

Innovation in sequencing instrumentation is increasing the per-batch data volumes and decreasing the per-base costs. Multiplexed chemistry protocols after the addition of index tags have further contributed to efficient and cost-effective sequencer utilization. With these pooled processing strategies, however, comes an increased risk of sample contamination. Sample contamination poses a risk of missing critical variants in a patient sample or wrongly reporting variants derived from the contaminant, which are particularly relevant issues in oncology specimen testing in which low variant allele frequencies have clinical relevance. Small custom-targeted next-generation sequencing (NGS) panels yield limited variants and pose challenges in delineating true somatic variants versus contamination calls. A number of popular contamination identification tools have the ability to perform well in whole-genome/exome sequencing data; however, in smaller gene panels, there are fewer variant candidates for the tools to perform accurately. To prevent clinical reporting of potentially contaminated samples in small next-generation sequencing panels, we have developed MICon (Microhaplotype Contamination detection), a novel contamination detection model that uses microhaplotype site variant allele frequencies. In a heterogeneous hold-out test cohort of 210 samples, the model displayed state-of-the-art performance with an area under the receiver-operating characteristic curve of 0.995.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Laboratórios , Humanos , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA