Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506245

RESUMO

Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.


Assuntos
Exocitose , Proteínas Monoméricas de Ligação ao GTP , Humanos , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Degranulação Celular , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte
3.
Nat Immunol ; 25(2): 282-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172257

RESUMO

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.


Assuntos
Ceramidas , Proteínas de Ligação ao GTP , Animais , Humanos , Longevidade/genética , Células Endoteliais/metabolismo , Mamíferos/metabolismo
4.
Front Immunol ; 14: 1202197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077311

RESUMO

Plasmacytoid dendritic cells (pDC) are the major producer of type 1 IFN in response to TLR7 agonists. Aberrant TLR7 activation and type 1 IFN expression by pDCs are linked to the pathogenesis of certain types of autoimmune diseases, including systemic lupus erythematosus (SLE). This study investigated the underlying mechanisms for TLR7-mediated cytokine expression by pDCs using a late endosome trafficking inhibitor, EGA (4-bromobenzaldehyde N-(2,6-dimethylphenyl) semicarbazone). We found that EGA treatment decreased IFNα expression by pDCs stimulated with imiquimod (R837), single-stranded RNA40, and influenza virus. EGA also decreased TNFα expression and secretion by R837-stimulated pDCs. Mechanistically, EGA treatment decreased phosphorylation of IKKα/ß, STAT1, and p38, and prolonged degradation of IκBα. Furthermore, EGA treatment decreased the colocalization of 3F, a substituted adenine TLR7 agonist, with LAMP1+ compartments in pDCs. EGA was also capable of diminishing IFNα expression by SLE pDCs treated with R837 or live PR8/A/34 influenza viruses. Therefore, we concluded that trafficking of TLR7 agonists to LAMP1+ compartments is important for IFNα expression by pDCs. Data from this study support additional examinations of the potential benefits of EGA in treating type 1 IFN-associated inflammatory diseases in the future.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/metabolismo , Imiquimode , Células Dendríticas , Citocinas/metabolismo
5.
Front Immunol ; 14: 1144127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020542

RESUMO

Plasmacytoid dendritic cells (pDCs) exhibit bifurcated cytokine responses to TLR9 agonists, an IRF7-mediated type 1 IFN response or a pro-inflammatory cytokine response via the activation of NF-κB. This bifurcated response has been hypothesized to result from either distinct signaling endosomes or endo-lysosomal trafficking delay of TLR9 agonists allowing for autocrine signaling to affect outcomes. Utilizing the late endosome trafficking inhibitor, EGA, we assessed the bifurcated cytokine responses of pDCs to TLR9 stimulation. EGA treatment of pDCs diminished both IFNα and pro-inflammatory cytokine expression induced by CpG DNAs (D- and K-type), CpG-DNAs complexed with DOTAP, and genomic DNAs complexed with LL37. Mechanistically, EGA suppressed phosphorylation of IKKα/ß, STAT1, Akt, and p38, and decreased colocalization of CpG oligodeoxynucleotides with LAMP+ endo-lysosomes. EGA also diminished type 1 IFN expression by pDCs from systemic lupus erythematosus patients. Therefore, our findings help understand mechanisms for the bifurcated cytokine responses by pDCs and support future examination of the potential benefit of EGA in treating type 1 IFN-associated inflammatory diseases in the future.


Assuntos
Citocinas , Receptor Toll-Like 9 , Humanos , Citocinas/metabolismo , Receptor Toll-Like 9/metabolismo , Interferon-alfa/metabolismo , Células Dendríticas/metabolismo , Endossomos/metabolismo
6.
Front Immunol ; 13: 871106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558071

RESUMO

NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais , Grânulos Citoplasmáticos , Imunoterapia Adotiva , Centro Organizador dos Microtúbulos
7.
Cancer Immunol Res ; 10(2): 162-181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34911739

RESUMO

Cytotoxic CD8+ T cells (CTL) are a crucial component of the immune system notable for their ability to eliminate rapidly proliferating malignant cells. However, the T-cell intrinsic factors required for human CTLs to accomplish highly efficient antitumor cytotoxicity are not well defined. By evaluating human CD8+ T cells from responders versus nonresponders to treatment with immune checkpoint inhibitors, we sought to identify key factors associated with effective CTL function. Single-cell RNA-sequencing analysis of peripheral CD8+ T cells from patients treated with anti-PD-1 therapy showed that cells from nonresponders exhibited decreased expression of the cytolytic granule-associated molecule natural killer cell granule protein-7 (NKG7). Functional assays revealed that reduced NKG7 expression altered cytolytic granule number, trafficking, and calcium release, resulting in decreased CD8+ T-cell-mediated killing of tumor cells. Transfection of T cells with NKG7 mRNA was sufficient to improve the tumor-cell killing ability of human T cells isolated from nonresponders and increase their response to anti-PD-1 or anti-PD-L1 therapy in vitro. NKG7 mRNA therapy also improved the antitumor activity of murine tumor antigen-specific CD8+ T cells in an in vivo model of adoptive cell therapy. Finally, we showed that the transcription factor ETS1 played a role in regulating NKG7 expression. Together, our results identify NKG7 as a necessary component for the cytotoxic function of CD8+ T cells and establish NKG7 as a T-cell-intrinsic therapeutic target for enhancing cancer immunotherapy.See related article by Li et al., p. 154.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Proteínas de Membrana , Neoplasias , RNA Mensageiro , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , RNA Mensageiro/uso terapêutico , Linfócitos T Citotóxicos
8.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34462354

RESUMO

The molecular events that determine the recycling versus degradation fates of internalized membrane proteins remain poorly understood. Two of the three members of the SNX-FERM family, SNX17 and SNX31, utilize their FERM domain to mediate endocytic trafficking of cargo proteins harboring the NPxY/NxxY motif. In contrast, SNX27 does not recycle NPxY/NxxY-containing cargo but instead recycles cargo containing PDZ-binding motifs via its PDZ domain. The underlying mechanism governing this divergence in FERM domain binding is poorly understood. Here, we report that the FERM domain of SNX27 is functionally distinct from SNX17 and interacts with a novel DLF motif localized within the N terminus of SNX1/2 instead of the NPxY/NxxY motif in cargo proteins. The SNX27-FERM-SNX1 complex structure reveals that the DLF motif of SNX1 binds to a hydrophobic cave surrounded by positively charged residues on the surface of SNX27. The interaction between SNX27 and SNX1/2 is critical for efficient SNX27 recruitment to endosomes and endocytic recycling of multiple cargoes. Finally, we show that the interaction between SNX27 and SNX1/2 is critical for brain development in zebrafish. Altogether, our study solves a long-standing puzzle in the field and suggests that SNX27 and SNX17 mediate endocytic recycling through fundamentally distinct mechanisms.


Assuntos
Encéfalo/crescimento & desenvolvimento , Domínios FERM , Nexinas de Classificação/metabolismo , Animais , Encéfalo/metabolismo , Endocitose , Transportador de Glucose Tipo 1/metabolismo , Humanos , Neurônios/citologia , Ligação Proteica , Transporte Proteico , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Nexinas de Classificação/química , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
9.
Nucleic Acids Res ; 49(6): 3322-3337, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704464

RESUMO

RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Proteínas Ativadoras de GTPase/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteína de Replicação A/metabolismo , Animais , Linhagem Celular Tumoral , Reparo do DNA , Feminino , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosforilação , Proteólise , Transdução de Sinais , Estresse Fisiológico/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
J Cell Biol ; 219(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32841357

RESUMO

Natural killer (NK) cell-mediated killing involves the membrane fusion of preformed lytic granules. While the roles of actin and microtubules are well accepted during this process, the function of septins, another cytoskeletal component that associates with actin and microtubules, has not been investigated. Here we show that genetic depletion or pharmacologic stabilization of the septin cytoskeleton significantly inhibited NK cell cytotoxicity. Although the stabilization of septin filaments impaired conjugate formation, depletion of septin proteins had no impact on conjugate formation, lytic granule convergence, or MTOC polarization to the cytotoxic synapse (CS). Interestingly, septins copurify and accumulate near the polarized lytic granules at the CS, where they regulate lytic granule release. Mechanistically, we find that septin 7 interacts with the SNARE protein syntaxin 11 and facilitates its interaction with syntaxin binding protein 2 to promote lytic granule fusion. Altogether, our data identify a critical role for septins in regulating the release of lytic granule contents during NK cell-mediated killing.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Citoesqueleto/metabolismo , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Microtúbulos/metabolismo , Septinas/metabolismo , Actinas/metabolismo , Comunicação Celular , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Septinas/genética
12.
Cell Cycle ; 15(1): 95-105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771714

RESUMO

The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.


Assuntos
Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteínas Repressoras/fisiologia , Sobrevivência Celular/fisiologia , Células HCT116 , Células HeLa , Humanos
13.
Mol Cell ; 60(1): 21-34, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387737

RESUMO

Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis.


Assuntos
Caderinas/metabolismo , Proteínas Cdc20/metabolismo , Instabilidade Genômica , Mitose , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
14.
J Immunol ; 194(8): 3984-96, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25762780

RESUMO

NK cells provide host defense by killing viral-infected and cancerous cells through the secretion of preformed lytic granules. Polarization of the lytic granules toward the target cell is dependent on an intact microtubule (MT) network as well as MT motors. We have recently shown that DOCK8, a gene mutated in a primary immunodeficiency syndrome, is involved in NK cell killing in part through its effects on MT organizing center (MTOC) polarization. In this study, we identified Hook-related protein 3 (HkRP3) as a novel DOCK8- and MT-binding protein. We further show that HkRP3 is present in lytic granule fractions and interacts with the dynein motor complex and MTs. Significantly, depletion of HkPR3 impaired NK cell cytotoxicity, which could be attributed to a defect in not only MTOC polarity, but also impaired clustering of lytic granules around the MTOC. Our results demonstrate an important role for HkRP3 in regulating the clustering of lytic granules and MTOC repositioning during the development of NK cell-mediated killing.


Assuntos
Dineínas/imunologia , Imunidade Celular/fisiologia , Células Matadoras Naturais/imunologia , Proteínas Associadas aos Microtúbulos/imunologia , Centro Organizador dos Microtúbulos/imunologia , Vesículas Secretórias/imunologia , Linhagem Celular , Fatores de Troca do Nucleotídeo Guanina/imunologia , Humanos
15.
Front Immunol ; 5: 2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24478771

RESUMO

Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.

16.
J Immunol ; 190(7): 3661-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455509

RESUMO

Recently, patients with mutations in DOCK8 have been reported to have a combined immunodeficiency characterized by cutaneous viral infections and allergies. NK cells represent a first-line defense against viral infections, suggesting that DOCK8 might participate in NK cell function. In this study, we demonstrate that DOCK8-suppressed human NK cells showed defects in natural cytotoxicity as well as specific activating receptor-mediated NK cytotoxicity. Additionally, compared with control NK cells, NK cells depleted of DOCK8 showed defective conjugate formation, along with decreased polarization of LFA-1, F-actin, and cytolytic granules toward the cytotoxic synapse. Using a proteomic approach, we found that DOCK8 exists in a macromolecular complex with the Wiskott-Aldrich syndrome protein, an actin nucleation-promoting factor activated by CDC42, as well as talin, which is required for integrin-mediated adhesion. Taken together, our results demonstrate an important role for DOCK8 in NK cell effector function and provide important new mechanistic insight into how DOCK8 regulates F-actin and integrin-mediated adhesion in immune cells.


Assuntos
Citotoxicidade Imunológica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Talina/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Linhagem Celular , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Citotoxicidade Imunológica/genética , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Modelos Biológicos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA