RESUMO
The low response rate of immune checkpoint inhibitors (ICIs) is a challenge. The efficacy of ICIs is influenced by the tumour microenvironment, which is controlled by the gut microbiota. In particular, intestinal bacteria and their metabolites, such as short chain fatty acids (SCFAs), are important regulators of cancer immunity; however, our knowledge on the effects of individual SCFAs remains limited. Here, we show that isobutyric acid has the strongest effect among SCFAs on both immune activity and tumour growth. In vitro, cancer cell numbers were suppressed by approximately 75% in humans and mice compared with those in controls. Oral administration of isobutyric acid to carcinoma-bearing mice enhanced the effect of anti-PD-1 immunotherapy, reducing tumour volume by approximately 80% and 60% compared with those in the control group and anti-PD-1 antibody alone group, respectively. Taken together, these findings may support the development of novel cancer therapies that can improve the response rate to ICIs.
Assuntos
Inibidores de Checkpoint Imunológico , Isobutiratos , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Isobutiratos/farmacologiaRESUMO
Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.
Assuntos
Neoplasias Encefálicas , Glioma , Temozolomida , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Metilases de Modificação do DNA/farmacologia , Metilases de Modificação do DNA/uso terapêutico , Enzimas Reparadoras do DNA/genética , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Glioma/genética , Metionina/farmacologia , Camundongos Nus , O(6)-Metilguanina-DNA Metiltransferase , Racemetionina/farmacologia , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/genéticaRESUMO
Immune checkpoint inhibitor discovery represents a turning point in cancer treatment. However, the response rates of solid tumors remain ~10%-30%; consequently, prognostic and immune-related adverse event (irAE) predictors are being explored. The programmed cell death protein 1 (PD-1) receptor occupancy (RO) of PD-1 inhibitors depends on the number of peripheral blood lymphocytes and their PD-1 expression levels, suggesting that the RO may be related to efficacy and adverse events. As PD-1 inhibition affects each T-cell subset differently, the RO of each cell population must be characterized. However, relevant data have not been reported, and the prognostic relevance of this parameter is not known. In this study, we aimed to clarify the association between the nivolumab RO in each T-cell population and patient prognosis and reveal the development of irAEs in nivolumab-treated patients. Thirty-two patients were included in the study, and the mean follow-up period was 364 days. The nivolumab RO on effector regulatory T cells (eTregs) was significantly lower in the group that presented clinical benefits, and a significant negative association was observed between PD-1 occupancy on eTregs and all-cause mortality. The results suggest that the nivolumab RO on eTregs may be a prognostic factor in PD-1 inhibitor therapy, implying that the inhibition of PD-1/PD-ligand 1 (PD-L1) signaling on eTregs may attenuate antitumor effects.
Assuntos
Neoplasias , Nivolumabe , Humanos , Nivolumabe/efeitos adversos , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente , Inibidores de Checkpoint ImunológicoRESUMO
Introduction: Programmed cell death ligand 1 (PD-L1) expression in tumor tissues is measured as a predictor of the therapeutic efficacy of immune checkpoint inhibitors (ICIs) in many cancer types. PD-L1 expression is evaluated by immunohistochemical staining using 3,3´-diaminobenzidine (DAB) chronogenesis (IHC-DAB); however, quantitative and reproducibility issues remain. We focused on a highly sensitive quantitative immunohistochemical method using phosphor-integrated dots (PIDs), which are fluorescent nanoparticles, and evaluated PD-L1 expression between the PID method and conventional DAB method. Methods: In total, 155 patients with metastatic or recurrent cancer treated with ICIs were enrolled from four university hospitals. Tumor tissue specimens collected before treatment were subjected to immunohistochemical staining with both the PID and conventional DAB methods to evaluate PD-L1 protein expression. Results: PD-L1 expression assessed using the PID and DAB methods was positively correlated. We quantified PD-L1 expression using the PID method and calculated PD-L1 PID scores. The PID score was significantly higher in the responder group than in the non-responder group. Survival analysis demonstrated that PD-L1 expression evaluated using the IHC-DAB method was not associated with progression-free survival (PFS) or overall survival (OS). Yet, PFS and OS were strikingly prolonged in the high PD-L1 PID score group. Conclusion: Quantification of PD-L1 expression as a PID score was more effective in predicting the treatment efficacy and prognosis of patients with cancer treated with ICIs. The quantitative evaluation of PD-L1 expression using the PID method is a novel strategy for protein detection. It is highly significant that the PID method was able to identify a group of patients with a favorable prognosis who could not be identified by the conventional DAB method.
Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/metabolismo , Reprodutibilidade dos Testes , Recidiva Local de Neoplasia/tratamento farmacológicoRESUMO
Immune checkpoint inhibitors (ICIs) are among the most notable advances in cancer immunotherapy; however, reliable biomarkers for the efficacy of ICIs are yet to be reported. Programmed death (PD)-ligand 1 (L1)-expressing CD14+ monocytes are associated with shorter overall survival (OS) time in patients with cancer treated with anti-PD-1 antibodies. The present study focused on the classification of monocytes into three subsets: Classical, intermediate and non-classical. A total of 44 patients with different types of cancer treated with anti-PD-1 monotherapy (pembrolizumab or nivolumab) were enrolled in the present study. The percentage of each monocyte subset was investigated, and the percentage of cells expressing PD-L1 or PD-1 within each of the three subsets was further analyzed. Higher pretreatment classical monocyte percentages were correlated with shorter OS (r=-0.32; P=0.032), whereas higher non-classical monocyte percentages were correlated with a favorable OS (r=0.39; P=0.0083). PD-L1-expressing classical monocytes accounted for a higher percentage of the total monocytes than non-classical monocytes with PD-L1 expression. In patients with non-small cell lung cancer (NSCLC), a higher percentage of PD-L1-expressing classical monocytes was correlated with shorter OS (r=-0.60; P=0.012), which is similar to the observation for the whole patient cohort. Comparatively, higher percentages of non-classical monocytes expressing PD-L1 were significantly associated with better OS, especially in patients with NSCLC (r=0.60; P=0.010). Moreover, a higher percentage of non-classical monocytes contributed to prolonged progression-free survival in patients with NSCLC (r=0.50; P=0.042), with similar results for PD-L1-expressing non-classical monocytes. The results suggested that the percentage of monocyte subsets in patients with cancer before anti-PD-1 monotherapy may predict the treatment efficacy and prognosis. Furthermore, more classical monocytes and fewer non-classical monocytes, especially those expressing PD-L1, are involved in shortening OS time, which may indicate the poor efficiency of anti-PD-1 treatment approaches.
RESUMO
Background: Cancer of unknown primary (CUP) is a malignant tumor without a known primary lesion with a frequency of 3-5%. It can be divided into favorable and unfavorable prognosis subsets. While recommended treatments are available for the former group, there is no established treatment for the latter. Here, we report the effective treatment of a 32-year-old woman with p16-positive squamous cell CUP with pembrolizumab plus 5-fluorouracil and cisplatin therapy. Case presentation: A 32-year-old woman presented with metastatic lesions in the liver, lung, bone, cervical region, abdominal region, and pelvic lymph nodes. She was diagnosed with p16-positive squamous cell carcinoma of unknown primary origin. The patient received pembrolizumab plus 5-fluorouracil and cisplatin therapy, which markedly reduced the metastasis and improved her Eastern Cooperative Oncology Group performance status after two courses. Conclusion: This case report highlights the potential of pembrolizumab plus 5-fluorouracil and cisplatin therapy for treating CUP with an unfavorable prognosis. p16 positivity is worth examining for squamous cell carcinoma of unknown primary origin, and if present, this therapy should be considered a promising treatment option.
RESUMO
Obesity increases with aging. Methionine restriction affects lipid metabolism and can prevent obesity in mice. In the present study we observed C57BL/6 mice to double their body weight from 4 to 48 weeks of age and become obese. We evaluated the efficacy of oral administration of recombinant-methioninase (rMETase)-producing E. coli (E. coli JM109-rMETase) or a methionine-deficient diet to reverse old-age-induced obesity in C57BL/6 mice. Fifteen C57BL/6 male mice aged 12-18 months with old-age-induced obesity were divided into three groups. Group 1 was given a normal diet supplemented with non-recombinant E. coli JM109 cells orally by gavage twice daily; Group 2 was given a normal diet supplemented with recombinant E. coli JM109-rMETase cells by gavage twice daily; and Group 3 was given a methionine-deficient diet without treatment. The administration of E. coli JM109-rMETase or a methionine-deficient diet reduced the blood methionine level and reversed old-age-induced obesity with significant weight loss by 14 days. There was a negative correlation between methionine levels and negative body weight change. Although the degree of efficacy was higher in the methionine-deficient diet group than in the E. coli JM109-rMETase group, the present findings suggested that oral administration of E. coli JM109-rMETase, as well as a methionine-deficient diet, are effective in reversing old-age-induced obesity. In conclusion, the present study provides evidence that restricting methionine by either a low-methionine diet or E. coli JM109-rMETase has clinical potential to treat old-age-induced obesity.
Assuntos
Escherichia coli , Metionina , Masculino , Animais , Camundongos , Proteínas Recombinantes , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Racemetionina , Peso Corporal , Dieta , Administração OralRESUMO
Introduction: Immune checkpoint inhibitors have had a major impact on cancer treatment. Gut microbiota plays a major role in the cancer microenvironment, affecting treatment response. The gut microbiota is highly individual, and varies with factors, such as age and race. Gut microbiota composition in Japanese cancer patients and the efficacy of immunotherapy remain unknown. Methods: We investigated the gut microbiota of 26 patients with solid tumors prior to immune checkpoint inhibitor monotherapy to identify bacteria involved in the efficacy of these drugs and immune-related adverse events (irAEs). Results: The genera Prevotella and Parabacteroides were relatively common in the group showing efficacy towards the anti-PD-1 antibody treatment (effective group). The proportions of Catenibacterium (P = 0.022) and Turicibacter (P = 0.049) were significantly higher in the effective group than in the ineffective group. In addition, the proportion of Desulfovibrion (P = 0.033) was significantly higher in the ineffective group. Next, they were divided into irAE and non-irAE groups. The proportions of Turicibacter (P = 0.001) and Acidaminococcus (P = 0.001) were significantly higher in the group with irAEs than in those without, while the proportions of Blautia (P = 0.013) and the unclassified Clostridiales (P = 0.027) were significantly higher in the group without irAEs than those with. Furthermore, within the Effective group, Acidaminococcus and Turicibacter (both P = 0.001) were more abundant in the subgroup with irAEs than in those without them. In contrast, Blautia (P = 0.021) and Bilophila (P= 0.033) were statistically significantly more common in those without irAEs. Discussion: Our Study suggests that the analysis of the gut microbiota may provide future predictive markers for the efficacy of cancer immunotherapy or the selection of candidates for fecal transplantation for cancer immunotherapy.
Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Acidaminococcus , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Imunoterapia/efeitos adversos , Microambiente TumoralRESUMO
All cancer cell types are methionine-addicted, which is termed the Hoffman effect. Cancer cells, unlike normal cells, cannot survive without large amount of methionine. In general, when methionine is depleted, both normal cells and cancer cells synthesize methionine from homocysteine, but cancer cells consume large amounts of methionine and they cannot survive without exogenous methionine. For this reason, methionine restriction has been shown to be effective against many cancers in vitro and in vivo. Methionine restriction arrests cancer cells in the S/G2-phase of the cell cycle. Cytotoxic agents that act in the S/G2-phase are highly effective when used in combination with methionine restriction due to the cancer cells being trapped in S/G2-phase, unlike normal cells which arrest in G1/G0-phase. Combining methionine restriction and chemotherapeutic drugs for cancer treatment is termed the Hoffman protocol. The efficacy of many cytotoxic agents and molecular-targeted drugs in combination with methionine restriction has been demonstrated. The most effective method of methionine restriction is the administration of recombinant methioninase (rMETase), which degrades methionine. The efficacy of rMETase has been reported in mice and human patients by oral administration. The present review describes studies on anticancer drugs that showed synergistic efficacy in combination with methionine restriction, including rMETase administration. It is proposed that the next disruptive generation of cancer chemotherapy should employ current therapy in combination with methionine restriction for all cancer types.
RESUMO
Lung cancer is the leading cause of cancer-related deaths worldwide. The standard of care for advanced non-small-cell lung cancer (NSCLC) without driver-gene mutations is a combination of an anti-PD-1/PD-L1 antibody and chemotherapy, or an anti-PD-1/PD-L1 antibody and an anti-CTLA-4 antibody with or without chemotherapy. Although there were fewer cases of disease progression in the early stages of combination treatment than with anti-PD-1/PD-L1 antibodies alone, only approximately half of the patients had a long-term response. Therefore, it is necessary to elucidate the mechanisms of resistance to immune checkpoint inhibitors. Recent reports of such mechanisms include reduced cancer-cell immunogenicity, loss of major histocompatibility complex, dysfunctional tumor-intrinsic interferon-γ signaling, and oncogenic signaling leading to immunoediting. Among these, the Wnt/ß-catenin pathway is a notable potential mechanism of immune escape and resistance to immune checkpoint inhibitors. In this review, we will summarize findings on these resistance mechanisms in NSCLC and other cancers, focusing on Wnt/ß-catenin signaling. First, we will review the molecular biology of Wnt/ß-catenin signaling, then discuss how it can induce immunoediting and resistance to immune checkpoint inhibitors. We will also describe other various mechanisms of immune-checkpoint-inhibitor resistance. Finally, we will propose therapeutic approaches to overcome these mechanisms.
RESUMO
BACKGROUND/AIM: Invasive lobular carcinoma (ILC) of the breast has a low complete-response rate in the neoadjuvant-chemotherapy setting. The addiction to methionine is a fundamental and ubiquitous characteristic of cancer cells, termed the Hoffman effect. We have previously targeted methionine addiction of breast cancer with recombinant methioninase (rMETase) using patient-derived orthotopic xenograft (PDOX) models. The aim of the present study was to determine the efficacy of methionine restriction with rMETase and a low-methionine diet combined with first-line neo-adjuvant chemotherapy, in a patient with metastatic ILC of the breast. CASE REPORT: A 62-year-old female was diagnosed with metastatic ipsilateral axillary-lymph-node recurrence of breast ILC 3 years after mastectomy. The patient underwent [11C]-methionine positron-emission tomography (METPET) which showed extensive methionine accumulation in the ipsilateral axillary lymph nodes, indicating the presence of cancer cells. The patient received standard neo-adjuvant chemotherapy, which consisted of 3 months of doxorubicin and cyclophosphamide followed by 3 months of docetaxel from March 2022. The patient also went on a low-methionine diet and daily oral rMETase as a supplement every 6 hours concurrently with six months chemotherapy. The patient's blood carcinoembryonic antigen (CEA) level decreased gradually, and computed tomography findings showed loss of axillary lymph-node metastases in the first 3 months of neo-adjuvant chemotherapy with doxorubicin and cyclophosphamide combined with rMETase and a low-methionine diet. A complete response was demonstrated by METPET at 6 months, at conclusion of docetaxel chemotherapy. CONCLUSION: Combination therapy of doxorubicin and cyclophosphamide followed by docetaxel combined with methionine restriction led to a remarkable complete response that is expected in fewer than 10% of patients with ILC of the breast treated with neo-adjuvant chemotherapy alone. The present results suggest that methionine restriction in combination with doxorubicin and cyclophosphamide followed by docetaxel may be effective, after METPET has demonstrated the presence of methionine-addicted axillary-lymph-node metastases in ILC of the breast.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Linfática , Neoplasias da Mama/tratamento farmacológico , Terapia Neoadjuvante , Metionina , Docetaxel , Mastectomia , Racemetionina , Linfonodos , Doxorrubicina/uso terapêutico , CiclofosfamidaRESUMO
Methionine addiction, a fundamental and general hallmark of cancer, known as the Hoffman Effect, is due to altered use of methionine for increased and aberrant transmethylation reactions. However, the linkage of methionine addiction and malignancy of cancer cells is incompletely understood. An isogenic pair of methionine-addicted parental osteosarcoma cells and their rare methionine-independent revertant cells enabled us to compare them for malignancy, their epithelial-mesenchymal phenotype, and pattern of histone-H3 lysine-methylation. Methionine-independent revertant 143B osteosarcoma cells (143B-R) were selected from methionine-addicted parental cells (143B-P) by their chronic growth in low-methionine culture medium for 4 passages, which was depleted of methionine by recombinant methioninase (rMETase). Cell-migration capacity was compared with a wound-healing assay and invasion capability was compared with a transwell assay in 143B-P and 143B-R cells in vitro. Tumor growth and metastatic potential were compared after orthotopic cell-injection into the tibia bone of nude mice in vivo. Epithelial-mesenchymal phenotypic expression and the status of H3 lysine-methylation were determined with western immunoblotting. 143B-P cells had an IC50 of 0.20 U/ml and 143B-R cells had an IC50 of 0.68 U/ml for treatment with rMETase, demonstrating that 143B-R cells had regained the ability to grow in low methionine conditions. 143B-R cells had reduced cell migration and invasion capability in vitro, formed much smaller tumors than 143B-P cells and lost metastatic potential in vivo, indicating loss of malignancy in 143B-R cells. 143B-R cells showed gain of the epithelial marker, ZO-1 and loss of mesenchymal markers, vimentin, Snail, and Slug and, an increase of histone H3K9me3 and H3K27me3 methylation and a decrease of H3K4me3, H3K36me3, and H3K79me3 methylation, along with their loss of malignancy. These results suggest that shifting the balance in histone methylases might be a way to decrease the malignant potential of cells. The present results demonstrate the rationale to target methionine addiction for improved sarcoma therapy.
RESUMO
BACKGROUND/AIM: All cancer types so far tested are methionine-addicted. Targeting the methionine addiction of cancer with recombinant methioninase (rMETase) has shown great progress in vitro, in mouse models, and in the clinic. However, administration of rMETase requires multiple doses per day. In the present study, we determined if rMETase-producing Escherichia coli JM109 (E. coli JM109-rMETase) might be an effective anticancer agent when installed into the microbiome. MATERIALS AND METHODS: E. coli JM109-rMETase was administered to a syngeneic model of MC38 colon cancer growing subcutaneously in C57BL/6 mice. JM109-rMETase was administered orally by gavage to the mice twice per day. Tumor size was measured with calipers. RESULTS: The administration of E. coli JM109-rMETase twice a day significantly inhibited MC38 colon-cancer growth. E. coli JM109-rMETase was found in the stool of treated mice, indicating it had entered the microbiome. CONCLUSION: The present study indicates the potential of microbiome-based treatment of cancer targeting methionine addiction.
Assuntos
Neoplasias do Colo , Microbiota , Animais , Camundongos , Liases de Carbono-Enxofre/farmacologia , Liases de Carbono-Enxofre/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Modelos Animais de Doenças , Escherichia coli , Metionina , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêuticoRESUMO
Immune checkpoint inhibitors (ICIs) have a major impact on cancer treatment. However, the therapeutic efficacy of ICIs is only effective in some patients. Programmed death ligand 1 (PD-L1), tumor mutation burden (TMB), and high-frequency microsatellite instability (MSI-high) are markers that predict the efficacy of ICIs but are not universally used in many carcinomas. The gut microbiota has received much attention recently because of its potential to have a significant impact on immune cells in the cancer microenvironment. Metabolites of the gut microbiota modulate immunity and have a strong influence on the therapeutic efficacy of ICI. It has been suggested that the gut microbiota may serve as a novel marker to predict the therapeutic efficacy of ICI. Therefore, there is an urgent need to develop biomarkers that can predict anti-tumor effects and adverse events, and the study of the gut microbiota is essential in this regard.
RESUMO
BACKGROUND/AIM: Rectal cancer is a recalcitrant disease with limited treatment options. Pre-clinical studies have shown the efficacy of methionine restriction with a low-methionine diet and oral recombinant methioninase (o-rMETase) for colorectal cancer. There are also clinical studies on methionine restriction with o-rMETase for other recalcitrant cancer types. The goal of the present study was to determine the efficacy of a low-methionine diet and o-rMETase on a rectal cancer patient. PATIENT AND METHODS: A 55-year-old man diagnosed with recurrent locally-advanced rectal-cancer was treated with o-rMETase and a low-methionine diet, during which time, he did not receive standard chemotherapy. Disease stability was monitored by carcinoembryonic antigen (CEA) levels, sigmoidoscopy, and computed tomography (CT). RESULTS: The patient was diagnosed with stage II rectal cancer (adenocarcinoma) in 2018. After neoadjuvant chemoradiotherapy, the patient received total mesorectal excision (TME) in 2018. Local recurrence was found by sigmoidoscopy one year later. The patient was given chemotherapy, the recurrent lesion shrunk, and was then removed endoscopically in December 2019, with positive margins. The tumor did not become apparent for about a year after that. An endoscopic examination performed in December 2020, revealed a local recurrence. Since that time, the patient had an elevated CEA. The patient went on o-rMETase and a low-methionine diet from January 2021. Since then, the patient's CEA level has remained stable for the next year and a half. He received sigmoidoscopy and CT regularly, and the tumor size has not changed. CONCLUSION: This patient's clinical course indicates that o-rMETase and a low-methionine diet may be effective for rectal cancer, for long-term disease stabilization. Further case studies and clinical trials are needed to determine the generality of the present result.
Assuntos
Metionina , Neoplasias Retais , Liases de Carbono-Enxofre/uso terapêutico , Antígeno Carcinoembrionário , Dieta , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Neoplasias Retais/tratamento farmacológicoRESUMO
BACKGROUND/AIM: Obesity is a major risk factor for colorectal cancer. The MC38 mouse colon-cancer cell line is a versatile syngeneic model of colon cancer in C57BL/6 mice. In the present study, the influence of a high-fat diet (HFD) on the growth of the MC38 mouse colon-cancer cell line was examined in an orthotopic-transplantation syngeneic model in C57BL/6 mice. MATERIALS AND METHODS: Five 6-week-old C57BL/6 male mice were fed a control diet (CD, 6.5% fat) or HFD (34.3% fat) for eight weeks. Then, a 2 mm3 fragment of a subcutaneous MC38 tumor was attached to the surface of the cecum of C57BL/6 mice with a single stitch using a 7-0 suture to establish an orthotopic-transplantation model. Each group continued their initial diet for 17 days. RESULTS: The HFD group had more than twice the tumor volume and tumor weight than the CD group (p=0.021 and p=0.014, respectively). CONCLUSION: HFD-induced obesity strongly increased MC38 colon-cancer progression in a C57BL/6 orthotopic-transplantation mouse model. The present study emphasizes the detrimental effect of obesity on coloncancer progression.
Assuntos
Neoplasias do Colo , Obesidade , Animais , Colo/patologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologiaRESUMO
BACKGROUND/AIM: Methionine addiction is a fundamental and general hallmark of cancer cells, which require exogenous methionine, despite large amounts of methionine synthesized endogenously. 5-Methylthioadenosine phosphorylase (MTAP) plays a principal role as an enzyme in the methionine-salvage pathway, which produces methionine and adenine from methylthioadenosine and is deleted in 27.5% to 37.5% of osteosarcoma patients. MATERIALS AND METHODS: Human osteosarcoma cell lines U2OS, SaOS2, MNNG/HOS (HOS) and 143B, were used. The MTAP gene was knocked out in U2OS with CRISPR/Cas9. 143B and HOS have an MTAP deletion and SaOS2 is positive for MTAP. MTAP was determined by western blotting. The four cell lines were compared for sensitivity to recombinant methioninase (rMETase). RESULTS: MTAP-deleted osteosarcoma cell lines MNNG/HOS and 143B were significantly more sensitive to rMETase than MTAP-positive osteosarcoma cell lines U2OS and SaOS2. In addition, MTAP knock-out U2OS cells were more sensitive to rMETase than the parental MTAP-positive U2OS cells. CONCLUSION: The present results demonstrated that the absence of MTAP sensitizes osteosarcoma cells to methionine restriction by rMETase, a promising clinical strategy.
Assuntos
Neoplasias Ósseas , Metionina , Osteossarcoma , Purina-Núcleosídeo Fosforilase , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/terapia , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Linhagem Celular Tumoral , Humanos , Metionina/deficiência , Metionina/metabolismo , Metionina/farmacologia , Metilnitronitrosoguanidina , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/terapia , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Proteínas Recombinantes/farmacologiaRESUMO
Methionine addiction, found in all types of cancer investigated, is because of the overuse of methionine by cancer cells for excess transmethylation reactions. In the present study, we compared the histone H3 lysine-methylation status and degree of malignancy between methionine-addicted cancer cells and their isogenic methionine-independent revertants, selected by their growth in low concentration of methionine. The methionine-independent revertans can grow on low levels of methionine or independently of exogenous methionine using methionine precursors, as do normal cells. In the methionine-independent revertants, the excess levels of trimethylated histone H3 lysine marks found in the methionine-addicted parental cancer cells were reduced or lost, and their tumorigenicity and experimental metastatic potential in nude mice were also highly reduced. Methionine addiction of cancer is linked with malignancy and hypermethylation of histone H3 lysines. The results of the present study thus provide a unique framework to further understand a fundamental basis of malignancy.
RESUMO
BACKGROUND/AIM: Osteosarcoma is the most common bone sarcoma. Although surgery and chemotherapy are initially effective, the 5-year survival is approximately 60% to 80%, and has not improved over three decades. We have previously shown that methionine restriction (MR) induced by oral recombinant methioninase (o-rMETase), is effective against osteosarcoma in patient-derived orthotopic xenograft (PDOX) nude-mouse models. In the present report, the efficacy of the combination of oral o-rMETase and methotrexate (MTX) was examined in an osteosarcoma PDOX mouse model. MATERIALS AND METHODS: An osteosarcoma-PDOX model was previously established by implanting tumor fragments into the proximal tibia of nude mice. The osteosarcoma PDOX models were randomized into four groups: control; o-rMETase alone; MTX alone; combination of o-rMETase and MTX. The mice were sacrificed after 4 weeks of treatment. RESULTS: The combination of o-rMETase and MTX showed significantly higher efficacy compared to the control group (p=0.04). The combination also showed significantly higher efficacy compared to MTX alone (p=0.04). No significant efficacy of o-rMETase alone or MTX alone compared to control was shown (p=0.21, 1.00, respectively). Only the combination of o-rMETase and MTX reduced the cancer-cell density in the osteosarcoma tumor. CONCLUSION: rMETase converted an osteosarcoma PDOX from MTX-resistant to MTX-sensitive and thereby shows future clinical potential.
Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Liases de Carbono-Enxofre/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metotrexato/uso terapêutico , Osteossarcoma/tratamento farmacológico , Administração Oral , Animais , Neoplasias Ósseas/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Nus , Osteossarcoma/patologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
RATIONALE: Bladder cancer is one of the most common cancers worldwide. The anti-programmed cell death protein 1 (PD-1) antibody pembrolizumab, which is an immune checkpoint inhibitor (ICI), has improved survival in bladder cancer. We report a case of bladder cancer that had a high antitumor effect with anti-programmed cell death PD-1 antibody pembrolizumab, an ICI, but asthma occurred an immune-related adverse event (irAE). PATIENT CONCERNS: A 70-year-old female patient was diagnosed as unresectable bladder cancer who was indicated for ICI treatment. DIAGNOSIS: After ICI administration as a treatment for bladder cancer, the patient had a grade 3 asthma attack. Cytotoxic T lymphocyte antigen 4 (CTLA-4) in CD4+ FOX3+ T cells was upregulated in the early phase before the development of asthma attacks. Moreover, T-cell immunoglobulin and mucin domain 3 (TIM-3) was upregulated in all memory T cells among CD4+ T cells. However, no change in the expression of TIM-3 was observed in any CD8+ T-cell subtype. In contrast, the proportion of CD161- T helper 17 cell (Th17) cells increased. INTERVENTIONS: The patient was treated with betamethasone, montelukast, salbutamol nebulization, and a combination of salmeterol (50âµg) and fluticasone (500âµg) (SFC). OUTCOMES: The patient's wheezing resolved, and her peak flow rate reached 100% of the predicted value; therefore, the patient continued treatment with SFC and montelukast and was discharged from the hospital. CONCLUSION: Increases in CTLA-4 and TIM-3 expression in CD4+ T cells (not CD8+), as well as an increase in Th17 cells, may reflect asthma-related inflammation activity. Immune-related adverse events during immune checkpoint inhibitor administration may be predictive markers of antitumor efficacy.