Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Genome Biol Evol ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38713108

RESUMO

In animals, three main RNA interference mechanisms have been described so far, which respectively maturate three types of small noncoding RNAs (sncRNAs): miRNAs, piRNAs, and endo-siRNAs. The diversification of these mechanisms is deeply linked with the evolution of the Argonaute gene superfamily since each type of sncRNA is typically loaded by a specific Argonaute homolog. Moreover, other protein families play pivotal roles in the maturation of sncRNAs, like the DICER ribonuclease family, whose DICER1 and DICER2 paralogs maturate respectively miRNAs and endo-siRNAs. Within Metazoa, the distribution of these families has been only studied in major groups, and there are very few data for clades like Lophotrochozoa. Thus, we here inferred the evolutionary history of the animal Argonaute and DICER families including 43 lophotrochozoan species. Phylogenetic analyses along with newly sequenced sncRNA libraries suggested that in all Trochozoa, the proteins related to the endo-siRNA pathway have been lost, a part of them in some phyla (i.e. Nemertea, Bryozoa, Entoprocta), while all of them in all the others. On the contrary, early diverging phyla, Platyhelminthes and Syndermata, showed a complete endo-siRNA pathway. On the other hand, miRNAs were revealed the most conserved and ubiquitous mechanism of the metazoan RNA interference machinery, confirming their pivotal role in animal cell regulation.


Assuntos
Evolução Molecular , MicroRNAs , Filogenia , Interferência de RNA , Ribonuclease III , Animais , Ribonuclease III/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Proteínas Argonautas/genética , Invertebrados/genética
2.
Cell Tissue Res ; 395(3): 299-311, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305882

RESUMO

Acoel flatworms possess epidermal sensory-receptor cells on their body surfaces and exhibit behavioral repertoires such as geotaxis and phototaxis. Acoel epidermal sensory receptors should be mechanical and/or chemical receptors; however, the mechanisms of their sensory reception have not been elucidated. We examined the three-dimensional relationship between epidermal sensory receptors and their innervation in an acoel flatworm, Praesagittifera naikaiensis. The distribution of the sensory receptors was different between the ventral and dorsal sides of worms. The nervous system was mainly composed of a peripheral nerve net, an anterior brain, and three pairs of longitudinal nerve cords. The nerve net was located closer to the body surface than the brain and the nerve cords. The sensory receptors have neural connections with the nerve net in the entire body of worms. We identified five homologs of polycystic kidney disease (PKD): PKD1-1, PKD1-2, PKD1-3, PKD1-4, and, PKD2, from the P. naikaiensis genome. All of these PKD genes were implied to be expressed in the epidermal sensory receptors of P. naikaiensis. PKD1-1 and PKD2 were dispersed across the entire body of worms. PKD1-2, PKD1-3, and PKD1-4 were expressed in the anterior region of worms. PKD1-4 was also expressed around the mouth opening. Our results indicated that P. naikaiensis possessed several types of epidermal sensory receptors to convert various environmental stimuli into electrical signals via the PKD channels and transmit the signals to afferent nerve and/or effector cells.


Assuntos
Platelmintos , Animais , Canais de Cátion TRPP/genética , Células Receptoras Sensoriais , Genoma , Encéfalo , Mutação
3.
Zoolog Sci ; 40(1): 53-63, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744710

RESUMO

Photic entrainment is an essential property of the circadian clock that sets the appropriate timing of daily behavioral and physiological events. However, the molecular mechanisms underlying the entrainment remain largely unknown. In the cricket Gryllus bimaculatus, the immediate early gene c-fosB plays an important role in photic entrainment, followed by a mechanism involving cryptochromes (crys). However, the association between c-fosB expression and crys remains unclear. In the present study, using RNA-sequencing analysis, we found that five Fbxl family genes (Fbxl4, Fbxl5, Fbxl16, Fbxl-like1, and Fbxl-like2) encoding F-box and leucine-rich repeat proteins are likely involved in the mechanism following light-dependent c-fosB induction. RNA interference (RNAi) of c-fosA/B significantly downregulated Fbxls expression, whereas RNAi of the Fbxl genes exerted no effect on c-fosB expression. The Fbxl genes showed rhythmic expression under light-dark cycles (LDs) with higher expression levels in early day (Fbxl16), whole day (Fbxl-like1), or day-to-early night (Fbxl4, Fbxl5, and Fbxl-like2), whereas their expression was reduced in the dark. We then examined the effect of their RNAi on the photic entrainment of the locomotor rhythm and found that RNAi of Fbxl4 either disrupted or significantly delayed the re-entrainment of the locomotor rhythm to shifted LDs. These results suggest that light-induced c-fosB expression stimulates Fbxl4 expression to reset the circadian clock.


Assuntos
Relógios Circadianos , Gryllidae , Animais , Gryllidae/fisiologia , Ritmo Circadiano/fisiologia , Relógios Circadianos/genética , Fotoperíodo , Interferência de RNA , Estimulação Luminosa/métodos , Luz
4.
J Eukaryot Microbiol ; 70(2): e12955, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36409155

RESUMO

The centrohelid heliozoan Raphidocystis contractilis has many radiating axopodia, each containing axopodial microtubules. The axopodia show rapid contraction at nearly a video rate (30 frames per second) in response to mechanical stimuli. The axopodial contraction is accompanied by cytoskeletal microtubule depolymerization, but the molecular mechanism of this phenomenon has not been elucidated. In this study, we performed de novo transcriptome sequencing of R. contractilis to identify genes involved in microtubule dynamics such as the rapid axopodial contraction. The transcriptome sequencing generated 7.15-Gbp clean reads in total, which were assembled as 31,771 unigenes. Using the obtained gene sets, we identified several microtubule-severing proteins which might be involved in the rapid axopodial contraction, and kinesin-like genes that occur in gene duplication. On the other hand, some genes for microtubule motor proteins involved in the formation and motility of flagella were not found in R. contractilis, suggesting that the gene repertoire of R. contractilis reflected the morphological features of nonflagellated protists. Our transcriptome analysis provides basic information for the analysis of the molecular mechanism underlying microtubule dynamics in R. contractilis.


Assuntos
Eucariotos , Perfilação da Expressão Gênica , Eucariotos/genética , Microtúbulos
5.
Sci Adv ; 8(9): eabk0331, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245108

RESUMO

Vasopressin/oxytocin (VP/OT)-related peptides are essential for mammalian antidiuresis, sociosexual behavior, and reproduction. However, the evolutionary origin of this peptide system is still uncertain. Here, we identify orthologous genes to those for VP/OT in Platyhelminthes, intertidal planarians that have a simple bilaterian body structure but lack a coelom and body-fluid circulatory system. We report a comprehensive characterization of the neuropeptide derived from this VP/OT-type gene, identifying its functional receptor, and name it the "platytocin" system. Our experiments with these euryhaline planarians, living where environmental salinities fluctuate due to evaporation and rainfall, suggest that platytocin functions as an "antidiuretic hormone" and also organizes diverse actions including reproduction and chemosensory-associated behavior. We propose that bilaterians acquired physiological adaptations to amphibious lives by such regulation of the body fluids. This neuropeptide-secreting system clearly became indispensable for life even without the development of a vascular circulatory system or relevant synapses.

6.
Sci Adv ; 8(10): eabn3264, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275721

RESUMO

d-Serine, a free amino acid synthesized by serine racemase, is a coagonist of N-methyl-d-aspartate-type glutamate receptor (NMDAR). d-Serine in the mammalian central nervous system modulates glutamatergic transmission. Functions of d-serine in mammalian peripheral tissues such as skin have also been described. However, d-serine's functions in nonmammals are unclear. Here, we characterized d-serine-dependent vesicle release from the epidermis during metamorphosis of the tunicate Ciona. d-Serine leads to the formation of a pocket that facilitates the arrival of migrating tissue during tail regression. NMDAR is the receptor of d-serine in the formation of the epidermal pocket. The epidermal pocket is formed by the release of epidermal vesicles' content mediated by d-serine/NMDAR. This mechanism is similar to observations of keratinocyte vesicle exocytosis in mammalian skin. Our findings provide a better understanding of the maintenance of epidermal homeostasis in animals and contribute to further evolutionary perspectives of d-amino acid function among metazoans.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona/metabolismo , Ciona intestinalis/metabolismo , Epiderme/metabolismo , Mamíferos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
7.
Zoolog Sci ; 39(1): 157-165, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35107003

RESUMO

The dynamics of microscopic marine plankton in coastal areas is a fundamental theme in marine biodiversity research, but studies have been limited because the only available methodology was collection of plankton using plankton-nets and microscopic observation. In recent years, environmental DNA (eDNA) analysis has exhibited potential for conducting comprehensive surveys of marine plankton diversity in water at fixed points and depths in the ocean. However, few studies have examined how eDNA analysis reflects the actual distribution and dynamics of organisms in the field, and further investigation is needed to determine whether it can detect distinct differences in plankton density in the field. To address this, we analyzed eDNA in seawater samples collected at 1 km intervals at three depths over a linear distance of approximately 3.0 km in the Seto Inland Sea. The survey area included a location with a high density of Acoela (Praesagittifera naikaiensis). However, the eDNA signal for this was little to none, and its presence would not have been noticed if we did not have this information beforehand. Meanwhile, eDNA analysis enabled us to confirm the presence of a species of Placozoa that was previously undiscovered in the area. In summary, our results suggest that the number of sequence reads generated from eDNA samples in our project was not sufficient to predict the density of a particular species. However, eDNA can be useful for detecting organisms that have been overlooked using other methods.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Monitoramento Ambiental , Água do Mar
8.
Sci Rep ; 11(1): 13315, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172791

RESUMO

Bombesin is a putative antibacterial peptide isolated from the skin of the frog, Bombina bombina. Two related (bombesin-like) peptides, gastrin-releasing peptide (GRP) and neuromedin B (NMB) have been found in mammals. The history of GRP/bombesin discovery has caused little attention to be paid to the evolutionary relationship of GRP/bombesin and their receptors in vertebrates. We have classified the peptides and their receptors from the phylogenetic viewpoint using a newly established genetic database and bioinformatics. Here we show, by using a clawed frog (Xenopus tropicalis), that GRP is not a mammalian counterpart of bombesin and also that, whereas the GRP system is widely conserved among vertebrates, the NMB/bombesin system has diversified in certain lineages, in particular in frog species. To understand the derivation of GRP system in the ancestor of mammals, we have focused on the GRP system in Xenopus. Gene expression analyses combined with immunohistochemistry and Western blotting experiments demonstrated that GRP peptides and their receptors are distributed in the brain and stomach of Xenopus. We conclude that GRP peptides and their receptors have evolved from ancestral (GRP-like peptide) homologues to play multiple roles in both the gut and the brain as one of the 'gut-brain peptide' systems.


Assuntos
Bombesina/metabolismo , Peptídeo Liberador de Gastrina/metabolismo , Xenopus laevis/metabolismo , Animais , Anuros/metabolismo , Mamíferos/metabolismo , Neurocinina B/análogos & derivados , Neurocinina B/metabolismo , Filogenia , Receptores da Bombesina/metabolismo
9.
G3 (Bethesda) ; 10(11): 3883-3895, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32900905

RESUMO

Various Hydra species have been employed as model organisms since the 18th century. Introduction of transgenic and knock-down technologies made them ideal experimental systems for studying cellular and molecular mechanisms involved in regeneration, body-axis formation, senescence, symbiosis, and holobiosis. In order to provide an important reference for genetic studies, the Hydra magnipapillata genome (species name has been changed to H. vulgaris) was sequenced a decade ago (Chapman et al., 2010) and the updated genome assembly, Hydra 2.0, was made available by the National Human Genome Research Institute in 2017. While H. vulgaris belongs to the non-symbiotic brown hydra lineage, the green hydra, Hydra viridissima, harbors algal symbionts and belongs to an early diverging clade that separated from the common ancestor of brown and green hydra lineages at least 100 million years ago (Schwentner and Bosch 2015; Khalturin et al., 2019). While interspecific interactions between H. viridissima and endosymbiotic unicellular green algae of the genus Chlorella have been a subject of interest for decades, genomic information about green hydras was nonexistent. Here we report a draft 280-Mbp genome assembly for Hydra viridissima strain A99, with a scaffold N50 of 1.1 Mbp. The H. viridissima genome contains an estimated 21,476 protein-coding genes. Comparative analysis of Pfam domains and orthologous proteins highlights characteristic features of H. viridissima, such as diversification of innate immunity genes that are important for host-symbiont interactions. Thus, the H. viridissima assembly provides an important hydrozoan genome reference that will facilitate symbiosis research and better comparisons of metazoan genome architectures.


Assuntos
Chlorella , Hydra , Hidrozoários , Animais , Chlorella/genética , Genoma , Humanos , Hydra/genética , Simbiose
10.
Curr Biol ; 30(8): 1555-1561.e4, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32220316

RESUMO

Metamorphosis, a widespread life history strategy in metazoans, allows dispersal and use of different ecological niches through a dramatic body change from a larval stage [1, 2]. Despite its conservation and importance, the molecular mechanisms underlying its initiation and progression have been characterized in only a few animal models. In this study, through pharmacological and gene functional analyses, we identified neurotransmitters responsible for metamorphosis of the ascidian Ciona. Ciona metamorphosis converts swimming tadpole larvae into vase-like, sessile adults. Here, we show that the neurotransmitter GABA is a key regulator of metamorphosis. We found that gonadotropin-releasing hormone (GnRH) is a downstream neuropeptide of GABA. Although GABA is generally thought of as an inhibitory neurotransmitter, we found that it positively regulates secretion of GnRH through the metabotropic GABA receptor during Ciona metamorphosis. GnRH is necessary for reproductive maturation in vertebrates, and GABA is an important excitatory regulator of GnRH in the hypothalamus during puberty [3, 4]. Our findings reveal another role of the GABA-GnRH axis in the regulation of post-embryonic development in chordates.


Assuntos
Ciona/fisiologia , Hormônio Liberador de Gonadotropina/genética , Metamorfose Biológica/genética , Ácido gama-Aminobutírico/metabolismo , Animais , Sequência de Bases , Ciona/genética , Ciona/crescimento & desenvolvimento , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/metabolismo
11.
Genome Biol Evol ; 11(11): 3144-3157, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621849

RESUMO

Since its initial publication in 2002, the genome of Ciona intestinalis type A (Ciona robusta), the first genome sequence of an invertebrate chordate, has provided a valuable resource for a wide range of biological studies, including developmental biology, evolutionary biology, and neuroscience. The genome assembly was updated in 2008, and it included 68% of the sequence information in 14 pairs of chromosomes. However, a more contiguous genome is required for analyses of higher order genomic structure and of chromosomal evolution. Here, we provide a new genome assembly for an inbred line of this animal, constructed with short and long sequencing reads and Hi-C data. In this latest assembly, over 95% of the 123 Mb of sequence data was included in the chromosomes. Short sequencing reads predicted a genome size of 114-120 Mb; therefore, it is likely that the current assembly contains almost the entire genome, although this estimate of genome size was smaller than previous estimates. Remapping of the Hi-C data onto the new assembly revealed a large inversion in the genome of the inbred line. Moreover, a comparison of this genome assembly with that of Ciona savignyi, a different species in the same genus, revealed many chromosomal inversions between these two Ciona species, suggesting that such inversions have occurred frequently and have contributed to chromosomal evolution of Ciona species. Thus, the present assembly greatly improves an essential resource for genome-wide studies of ascidians.


Assuntos
Inversão Cromossômica , Ciona intestinalis/genética , Evolução Molecular , Animais , Cordados não Vertebrados , Genoma , Filogenia
12.
Nat Ecol Evol ; 3(6): 989, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31048744

RESUMO

The version of this article originally published was not open access, but should have been open access. The error has been corrected, and the paper is now open access with a CC-BY license.

13.
Nat Ecol Evol ; 3(5): 811-822, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988488

RESUMO

Cnidarians are astonishingly diverse in body form and lifestyle, including the presence of a jellyfish stage in medusozoans and its absence in anthozoans. Here, we sequence the genomes of Aurelia aurita (a scyphozoan) and Morbakka virulenta (a cubozoan) to understand the molecular mechanisms responsible for the origin of the jellyfish body plan. We show that the magnitude of genetic differences between the two jellyfish types is equivalent, on average, to the level of genetic differences between humans and sea urchins in the bilaterian lineage. About one-third of Aurelia genes with jellyfish-specific expression have no matches in the genomes of the coral and sea anemone, indicating that the polyp-to-jellyfish transition requires a combination of conserved and novel, medusozoa-specific genes. While no genomic region is specifically associated with the ability to produce a jellyfish stage, the arrangement of genes involved in the development of a nematocyte-a phylum-specific cell type-is highly structured and conserved in cnidarian genomes; thus, it represents a phylotypic gene cluster.


Assuntos
Cifozoários , Anêmonas-do-Mar , Animais , Genoma , Genômica
14.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848439

RESUMO

Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.


Assuntos
Evolução Biológica , Chlorella/metabolismo , Hydra/metabolismo , Simbiose , Animais , Chlorella/efeitos dos fármacos , Chlorella/genética , Sequência Conservada , Escuridão , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Genoma , Hydra/efeitos dos fármacos , Hydra/genética , Hydra/crescimento & desenvolvimento , Anotação de Sequência Molecular , Nitratos/metabolismo , Nitrogênio/metabolismo , Fotossíntese/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Especificidade da Espécie , Açúcares/farmacologia , Simbiose/efeitos dos fármacos , Simbiose/genética
15.
Dev Biol ; 405(2): 304-15, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206613

RESUMO

The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration.


Assuntos
Ciona intestinalis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Receptores Notch/metabolismo , Animais , Evolução Biológica , Proliferação de Células , Epiderme/metabolismo , Perfilação da Expressão Gênica , Hibridização In Situ , Ligantes , Análise de Sequência com Séries de Oligonucleotídeos , Faloidina/química , RNA/metabolismo , Regeneração , Transdução de Sinais , Células-Tronco/citologia
16.
Dev Biol ; 403(1): 43-56, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25888074

RESUMO

Hox cluster genes play crucial roles in development of the metazoan antero-posterior axis. Functions of Hox genes in patterning the central nervous system and limb buds are well known. They are also expressed in chordate endodermal tissues, where their roles in endodermal development are still poorly understood. In the invertebrate chordate, Ciona intestinalis, endodermal tissues are in a premature state during the larval stage, and they differentiate into the digestive tract during metamorphosis. In this study, we showed that disruption of a Hox gene, Ci-Hox10, prevented intestinal formation. Ci-Hox10-knock-down larvae displayed defective migration of endodermal strand cells. Formation of a protrusion, which is important for cell migration, was disrupted in these cells. The collagen type IX gene is a downstream target of Ci-Hox10, and is negatively regulated by Ci-Hox10 and a matrix metalloproteinase ortholog, prior to endodermal cell migration. Inhibition of this regulation prevented cellular migration. These results suggest that Ci-Hox10 regulates endodermal strand cell migration by forming a protrusion and by reconstructing the extracellular matrix.


Assuntos
Movimento Celular/fisiologia , Ciona intestinalis/embriologia , Endoderma/citologia , Proteínas de Homeodomínio/genética , Intestinos/embriologia , Animais , Padronização Corporal/genética , Diferenciação Celular , Ciona intestinalis/metabolismo , Colágeno Tipo IX/biossíntese , Colágeno Tipo IX/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Homeobox/genética , Proteínas de Homeodomínio/metabolismo , Intestinos/citologia
17.
Bioessays ; 36(12): 1185-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205353

RESUMO

Ecological developmental biology (eco-devo) explores the mechanistic relationships between the processes of individual development and environmental factors. Recent studies imply that some of these relationships have deep evolutionary origins, and may even pre-date the divergences of the simplest extant animals, including cnidarians and sponges. Development of these early diverging metazoans is often sensitive to environmental factors, and these interactions occur in the context of conserved signaling pathways and mechanisms of tissue homeostasis whose detailed molecular logic remain elusive. Efficient methods for transgenesis in cnidarians together with the ease of experimental manipulation in cnidarians and sponges make them ideal models for understanding causal relationships between environmental factors and developmental mechanisms. Here, we identify major questions at the interface between animal evolution and development and outline a road map for research aimed at identifying the mechanisms that link environmental factors to developmental mechanisms in early diverging metazoans. Also watch the Video Abstract.


Assuntos
Evolução Biológica , Cnidários/crescimento & desenvolvimento , Interação Gene-Ambiente , Estágios do Ciclo de Vida/genética , Poríferos/crescimento & desenvolvimento , Animais , Cnidários/classificação , Cnidários/genética , Ecossistema , Extinção Biológica , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica/genética , Filogenia , Poríferos/classificação , Poríferos/genética , Transdução de Sinais
18.
Sci Rep ; 4: 5050, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24854849

RESUMO

Maternal mRNAs play crucial roles during early embryogenesis of ascidians, but their functions are largely unknown. In this study, we developed a new method to specifically knockdown maternal mRNAs in Ciona intestinalis using transposon-mediated transgenesis. We found that GFP expression is epigenetically silenced in Ciona intestinalis oocytes and eggs, and this epigenetic silencing of GFP was used to develop the knockdown method. When the 5' upstream promoter and 5' untranslated region (UTR) of a maternal gene are used to drive GFP in eggs, the maternal gene is specifically knocked down together with GFP. The 5' UTR of the maternal gene is the major element that determines the target gene silencing. Zygotic transcription of the target gene is unaffected, suggesting that the observed phenotypes specifically reflect the maternal function of the gene. This new method can provide breakthroughs in studying the functions of maternal mRNAs.


Assuntos
Regiões 5' não Traduzidas/genética , Animais Geneticamente Modificados/genética , Ciona intestinalis/genética , Elementos de DNA Transponíveis/genética , Proteínas do Ovo/genética , Inativação Gênica , RNA Mensageiro/genética , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Ciona intestinalis/crescimento & desenvolvimento , Metilação de DNA , Proteínas do Ovo/antagonistas & inibidores , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Estabilidade de RNA , RNA Mensageiro/antagonistas & inibidores
19.
Curr Biol ; 23(15): 1399-408, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23850284

RESUMO

BACKGROUND: Dinoflagellates are known for their capacity to form harmful blooms (e.g., "red tides") and as symbiotic, photosynthetic partners for corals. These unicellular eukaryotes have permanently condensed, liquid-crystalline chromosomes and immense nuclear genome sizes, often several times the size of the human genome. Here we describe the first draft assembly of a dinoflagellate nuclear genome, providing insights into its genome organization and gene inventory. RESULTS: Sequencing reads from Symbiodinium minutum were assembled into 616 Mbp gene-rich DNA regions that represented roughly half of the estimated 1,500 Mbp genome of this species. The assembly encoded ∼42,000 protein-coding genes, consistent with previous dinoflagellate gene number estimates using transcriptomic data. The Symbiodinium genome contains duplicated genes for regulator of chromosome condensation proteins, nearly one-third of which have eukaryotic orthologs, whereas the remainder have most likely been acquired through bacterial horizontal gene transfers. Symbiodinium genes are enriched in spliceosomal introns (mean = 18.6 introns/gene). Donor and acceptor splice sites are unique, with 5' sites utilizing not only GT but also GC and GA, whereas at 3' sites, a conserved G is present after AG. All spliceosomal snRNA genes (U1-U6) are clustered in the genome. Surprisingly, the Symbiodinium genome displays unidirectionally aligned genes throughout the genome, forming a cluster-like gene arrangement. CONCLUSIONS: We show here that a dinoflagellate genome exhibits unique and divergent characteristics when compared to those of other eukaryotes. Our data elucidate the organization and gene inventory of dinoflagellates and lay the foundation for future studies of this remarkable group of eukaryotes.


Assuntos
Dinoflagellida/genética , Genoma , Núcleo Celular/genética , Cromatina/genética , Duplicação Gênica , Íntrons , Dados de Sequência Molecular , RNA Nuclear Pequeno , Spliceossomos/genética , Transcrição Gênica
20.
Gene ; 519(1): 82-90, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23388151

RESUMO

We provide a new oligo-microarray for Ciona intestinalis, based on the NimbleGen 12-plex×135k format. The array represents 106,285 probes, which is more than double the probe number of the currently available 44k microarray. These probes cover 99.2% of the transcripts in the KyotoHoya (KH) models, published in 2008, and they contain 81.1% of the entries in the UniGene database that are not included in the KH models. In this paper, we show that gene expression levels measured by this new 135k microarray are highly correlated with those obtained by the existing 44k microarray for genes common to both arrays. We also investigated gene expression using samples obtained from the ovary and the neural complex of adult C. intestinalis, showing that the expression of tissue-specific genes is consistent with previous reports. Approximately half of the highly expressed genes identified in the 135k microarray are not included in the previous microarray. The high coverage of gene models by this microarray made it possible to identify splicing variants for a given transcript. The 135k microarray is useful in investigating the functions of genes that are not yet well characterized. Detailed information about this 135k microarray is accessible at no charge from supplemental materials, NCBI Gene Expression Omnibus (GEO), and http://marinegenomics.oist.jp.


Assuntos
Ciona intestinalis/genética , Perfilação da Expressão Gênica/métodos , Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Bases de Dados Genéticas , Feminino , Modelos Genéticos , Neurônios/citologia , Neurônios/metabolismo , Ovário/citologia , Ovário/metabolismo , Splicing de RNA , Reprodutibilidade dos Testes , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA