Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 65(22): 15066-15084, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346645

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a brain-relevant kinase and an emerging drug target for ischemic stroke and neurodegenerative disorders. Despite reported CaMKIIα inhibitors, their usefulness is limited by low subtype selectivity and brain permeability. (E)-2-(5-Hydroxy-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (NCS-382) is structurally related to the proposed neuromodulator, γ-hydroxybutyric acid, and is a brain-penetrating high nanomolar-affinity ligand selective for the CaMKIIα hub domain. Herein, we report the first series of NCS-382 analogs displaying improved affinity and preserved brain permeability. Specifically, we present Ph-HTBA (1i) with enhanced mid-nanomolar affinity for the CaMKIIα binding site and a marked hub thermal stabilization effect along with a distinct CaMKIIα Trp403 flip upon binding. Moreover, Ph-HTBA has good cellular permeability and low microsomal clearance and shows brain permeability after systemic administration to mice, signified by a high Kp, uu value (0.85). Altogether, our study highlights Ph-HTBA as a promising candidate for CaMKIIα-associated pharmacological interventions and future clinical development.


Assuntos
Benzocicloeptenos , Encéfalo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Animais , Camundongos , Benzocicloeptenos/farmacologia , Sítios de Ligação , Encéfalo/metabolismo , Ligação Proteica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores
2.
Nat Commun ; 12(1): 6093, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667164

RESUMO

Strategies for investigating and optimizing the expression and folding of proteins for biotechnological and pharmaceutical purposes are in high demand. Here, we describe a dual-reporter biosensor system that simultaneously assesses in vivo protein translation and protein folding, thereby enabling rapid screening of mutant libraries. We have validated the dual-reporter system on five different proteins and find an excellent correlation between reporter signals and the levels of protein expression and solubility of the proteins. We further demonstrate the applicability of the dual-reporter system as a screening assay for deep mutational scanning experiments. The system enables high throughput selection of protein variants with high expression levels and altered protein stability. Next generation sequencing analysis of the resulting libraries of protein variants show a good correlation between computationally predicted and experimentally determined protein stabilities. We furthermore show that the mutational experimental data obtained using this system may be useful for protein structure calculations.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Biossíntese de Proteínas , Dobramento de Proteína , Estabilidade Proteica , Proteína Vermelha Fluorescente
3.
Commun Biol ; 4(1): 980, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408246

RESUMO

Most single point mutations destabilize folded proteins. Mutations that stabilize a protein typically only have a small effect and multiple mutations are often needed to substantially increase the stability. Multiple point mutations may act synergistically on the stability, and it is often not straightforward to predict their combined effect from the individual contributions. Here, we have applied an efficient in-cell assay in E. coli to select variants of the barley chymotrypsin inhibitor 2 with increased stability. We find two variants that are more than 3.8 kJ mol-1 more stable than the wild-type. In one case, the increased stability is the effect of the single substitution D55G. The other case is a double mutant, L49I/I57V, which is 5.1 kJ mol-1 more stable than the sum of the effects of the individual mutations. In addition to demonstrating the strength of our selection system for finding stabilizing mutations, our work also demonstrate how subtle conformational effects may modulate stability.


Assuntos
Escherichia coli/genética , Biblioteca Gênica , Hordeum/genética , Peptídeos/genética , Proteínas de Plantas/genética , Mutação Puntual , Escherichia coli/metabolismo , Hordeum/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330837

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Oxibato de Sódio/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ácidos Carboxílicos/farmacologia , Cristalografia por Raios X , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neuroproteção , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
5.
Anal Biochem ; 605: 113863, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738214

RESUMO

The stability of a protein is a fundamental property that determines under which conditions, the protein is functional. Equilibrium unfolding with denaturants requires preparation of several samples and only provides the free energy of folding when performed at a single temperature. The typical sample requirement is around 0.5-1 mg of protein. If the stability of many proteins or protein variants needs to be determined, substantial protein production may be needed. Here we have determined the stability of acyl-coenzyme A binding protein at pH 5.3 and chymotrypsin inhibitor 2 at pH 3 and pH 6.25 by combined temperature and denaturant unfolding. We used a setup where tryptophan fluorescence is measured in quartz capillaries where only 10 µl is needed. Temperature unfolding of a series of 15 samples at increasing denaturant concentrations provided accurate and precise thermodynamic parameters. We find that the number of samples may be further reduced and less than 10 µg of protein in total are needed for reliable stability measurements. For assessment of stability of protein purified in small scale e.g. in micro plate format, our method will be highly applicable. The routine for fitting the experimental data is made available as a python notebook.


Assuntos
Proteínas de Transporte/química , Peptídeos/química , Proteínas de Plantas/química , Desnaturação Proteica , Guanidina/química , Cinética , Conformação Proteica , Estabilidade Proteica , Termodinâmica , Ureia/química
6.
J Biol Chem ; 295(22): 7620-7634, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32317284

RESUMO

Mutations in the genes encoding the highly conserved Ca2+-sensing protein calmodulin (CaM) cause severe cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia or long QT syndrome and sudden cardiac death. Most of the identified arrhythmogenic mutations reside in the C-terminal domain of CaM and mostly affect Ca2+-coordinating residues. One exception is the catecholaminergic polymorphic ventricular tachycardia-causing N53I substitution, which resides in the N-terminal domain (N-domain). It does not affect Ca2+ coordination and has only a minor impact on binding affinity toward Ca2+ and on other biophysical properties. Nevertheless, the N53I substitution dramatically affects CaM's ability to reduce the open probability of the cardiac ryanodine receptor (RyR2) while having no effect on the regulation of the plasmalemmal voltage-gated Ca2+ channel, Cav1.2. To gain more insight into the molecular disease mechanism of this mutant, we used NMR to investigate the structures and dynamics of both apo- and Ca2+-bound CaM-N53I in solution. We also solved the crystal structures of WT and N53I CaM in complex with the primary calmodulin-binding domain (CaMBD2) from RyR2 at 1.84-2.13 Å resolutions. We found that all structures of the arrhythmogenic CaM-N53I variant are highly similar to those of WT CaM. However, we noted that the N53I substitution exposes an additional hydrophobic surface and that the intramolecular dynamics of the protein are significantly altered such that they destabilize the CaM N-domain. We conclude that the N53I-induced changes alter the interaction of the CaM N-domain with RyR2 and thereby likely cause the arrhythmogenic phenotype of this mutation.


Assuntos
Arritmias Cardíacas , Cálcio/química , Calmodulina/química , Calmodulina/genética , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Substituição de Aminoácidos , Cálcio/metabolismo , Calmodulina/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA