Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Phytopathology ; 114(1): 137-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318843

RESUMO

Interactions between microorganisms and frugivorous insects can modulate fruit rot disease epidemiology. Insect feeding and/or oviposition wounds may create opportunities for fungal infection. Passive and active dispersal of fungal inoculums by adult insects also increases disease incidence. In fall-bearing raspberries and blackberries, such vectoring interactions could increase crop damage from the invasive pestiferous vinegar fly Drosophila suzukii (spotted-wing drosophila). Periods of peak D. suzukii activity are known to overlap with several species of primary fruit rot pathogen, particularly Botrytis cinerea and Cladosporium cladosporioides, and previous work indicates that larvae co-occur with and feed on various filamentous fungi at low rates. To further our understanding of the epidemiological consequences that may emerge from these associations, we surveyed the filamentous fungal community associated with adult D. suzukii, isolating and molecularly identifying fungi externally and internally (indicating feeding) from field-collected adults over 3 years. We isolated and identified 37 unique genera of fungi in total, including known raspberry pathogens. Most fungi were detected infrequently, and flies acquired and carried fungi externally at higher richness, frequency, and density relative to internally. In a worst-case scenario laboratory vectoring assay, D. suzukii adults were able to transfer B. cinerea and C. cladosporioides to sterile media at 0, 24, 48, and 72 h after exposure to sporulating cultures in Petri dishes. These results collectively suggest an adventitious vectoring association between D. suzukii and fruit rot fungi that has the potential to alter caneberry disease dynamics.


Assuntos
Drosophila , Rubus , Animais , Feminino , Doenças das Plantas , Rubus/microbiologia , Larva , Frutas/microbiologia , Controle de Insetos/métodos
2.
J Econ Entomol ; 115(4): 1046-1053, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35296902

RESUMO

Drosophila suzukii (Matsumura) has spread rapidly, challenging berry and cherry crop production due to its ability to lay eggs into ripening fruit. To prevent infestation by this pest, insecticides are applied during fruit ripening and harvest. We field-tested the Rapid Assessment Protocol for IDentification of resistance in D. suzukii (RAPID) on seventy-eight populations collected across eight U.S. states in 2017 and 2018. Exposure to LC50 rates of malathion, methomyl, spinetoram, spinosad, and zeta-cypermethrin led to average female fly mortality of 25.0% in 2017, and after adjusting concentrations the average was 39.9% in 2018. Using LC99 × 2 discriminating concentrations in 2017 and LC90 × 8 rates in 2018, average female mortalities were 93.3% and 98.5%, respectively, indicating high overall susceptibility. However, using these high concentrations we found 32.0% of assays with survival of some female flies in 2017 and 27.8% in 2018. The adjustment in discriminating dose from 2017 to 2018 also reduced the proportion of assays with <90% survival from 17.6 to 2.9%. Populations with low mortality when exposed to spinosad were identified using this assay, triggering more detailed follow-up bioassays that identified resistant populations collected in California coastal region berry crops. Widespread evaluations of this method and subsequent validation in California, Michigan, and Georgia in 2019-2021 show that it provides a quick and low-cost method to identify populations of D. suzukii that warrant more detailed testing. Our results also provide evidence that important insecticide classes remain effective in most U.S. regions of fruit production.


Assuntos
Inseticidas , Animais , Produtos Agrícolas , Drosophila , Feminino , Frutas , Controle de Insetos/métodos , Inseticidas/farmacologia , Malation/farmacologia , Metomil/farmacologia , Estados Unidos
3.
J Econ Entomol ; 115(4): 943-954, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34964883

RESUMO

Caneberries are trellised to facilitate harvest and agrochemical applications as well as to improve crop yield and quality. Trellising can also increase airflow and light penetration within the canopy and affect its microclimate. We compared an experimental trellis that split the canopy into halves to standard I- and V-trellises, measuring Drosophila suzukii (Matsumura) fruit infestation as well as canopy temperature and relative humidity in raspberries at two commercial you-pick diversified farms. To evaluate the combined effects of trellising systems and pruning, we pruned one half of each row in blackberry plantings at two research farms and assessed D. suzukii infestation, canopy microclimate (temperature, relative humidity, and light intensity), fruit quality parameters (interior temperature, total soluble solids, and penetration force), and spray coverage/deposition. Trellis installation costs, labor inputs, and yield were used to further evaluate the trellis systems from an economic perspective. Fruit quality was not affected by trellising or pruning and lower total yield was observed in the experimental trellis treatment on one farm. Although D. suzukii infestation was only affected by trellising and pruning at one site, we observed a relationship between higher temperatures and reduced infestation on nearly all farms. Occasionally, lower relative humidity and high light intensity corresponded with lower infestation. Ultimately, the experimental trellis was less economically efficient than other trellising systems and our ability to successfully manipulate habitat favorability varied in a site-specific manner. Drosophila suzukii management approaches that rely upon unfavorable conditions are likely to be more effective in hot, dry regions.


Assuntos
Drosophila , Rubus , Animais , Ecossistema , Frutas , Controle de Insetos , Microclima
4.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930832

RESUMO

Replacing synthetic insecticides with transgenic crops for pest management has been economically and environmentally beneficial, but these benefits erode as pests evolve resistance. It has been proposed that novel genomic approaches could track molecular signals of emerging resistance to aid in resistance management. To test this, we quantified patterns of genomic change in Helicoverpa zea, a major lepidopteran pest and target of transgenic Bacillus thuringiensis (Bt) crops, between 2002 and 2017 as both Bt crop adoption and resistance increased in North America. Genomic scans of wild H. zea were paired with quantitative trait locus (QTL) analyses and showed the genomic architecture of field-evolved Cry1Ab resistance was polygenic, likely arising from standing genetic variation. Resistance to pyramided Cry1A.105 and Cry2Ab2 toxins was controlled by fewer loci. Of the 11 previously described Bt resistance genes, 9 showed no significant change over time or major effects on resistance. We were unable to rule out a contribution of aminopeptidases (apns), as a cluster of apn genes were found within a Cry-associated QTL. Molecular signals of emerging Bt resistance were detectable as early as 2012 in our samples, and we discuss the potential and pitfalls of whole-genome analysis for resistance monitoring based on our findings. This first study of Bt resistance evolution using whole-genome analysis of field-collected specimens demonstrates the need for a more holistic approach to examining rapid adaptation to novel selection pressures in agricultural ecosystems.


Assuntos
Evolução Molecular , Resistência a Inseticidas/genética , Mariposas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Animais , Bacillus thuringiensis/genética , Produtos Agrícolas , Genoma de Inseto/genética , Masculino
5.
Insects ; 12(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671153

RESUMO

Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly of Asian origin, has emerged as a devastating pest of small and stone fruits throughout the United States. Tolerance for larvae is extremely low in fresh market fruit, and management is primarily achieved through repeated applications of broad-spectrum insecticides. These applications are neither economically nor environmentally sustainable, and can limit markets due to insecticide residue restrictions, cause outbreaks of secondary pests, and select for insecticide resistance. Sustainable integrated pest management programs include cultural control tactics and various nonchemical approaches for reducing pest populations that may be useful for managing D. suzukii. This review describes the current state of knowledge and implementation for different cultural controls including preventative tactics such as crop selection and exclusion as well as strategies to reduce habitat favorability (pruning; mulching; irrigation), alter resource availability (harvest frequency; sanitation), and lower suitability of fruit postharvest (cooling; irradiation). Because climate, horticultural practices, crop, and market underlie the efficacy, feasibility, and affordability of cultural control tactics, the potential of these tactics for D. suzukii management is discussed across different production systems.

6.
J Econ Entomol ; 113(6): 2820-2831, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33128449

RESUMO

Spray coverage may influence the efficacy of insecticides targeting the invasive vinegar fly Drosophila suzukii (Matsumura), a primary pest of raspberries and blackberries. In commercially managed caneberries, spray coverage is typically lowest in the inner and lower plant canopy, regions that overlap with higher levels of adult D. suzukii activity. To understand how spray coverage of fruit impacts efficacy against D. suzukii, laboratory bioassays were conducted using raspberries. In laboratory bioassays, higher spray coverage did not impact larval infestation rates but did increase adult mortality, indicating that flies can avoid a lethal dose of insecticide when applications do not achieve adequate coverage. We also evaluated how carrier water volume impacts spray coverage patterns throughout the canopy of raspberry and blackberry plants using both airblast and CO2 backpack sprayers. Increasing carrier water volume generally improved spray coverage in the lower plant canopy. However, effects in the upper plant canopy were inconsistent and varied between sprayer types. In addition to carrier water volume, other approaches, including adjusting the pesticide sprayer equipment used and/or sprayer calibration, should also be explored to improve coverage. Growers should evaluate spray coverage in their caneberries to identify and troubleshoot coverage issues. Results from this study indicate that taking the time to optimize this aspect of pesticide application may improve chemical management of D. suzukii and will likely also improve control of other important caneberry pests.


Assuntos
Inseticidas , Rubus , Animais , Drosophila , Fazendas , Frutas , Controle de Insetos
7.
Pest Manag Sci ; 76(1): 55-66, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31207075

RESUMO

BACKGROUND: Fruit growers largely depend on chemical control to reduce populations of the economically damaging invasive fly, Drosophila suzukii (Matsumura). Drosophila suzukii is susceptible to high temperatures and low humidity; therefore, it may be possible to implement cultural control practices that create microclimates unfavorable for its development and survival. In addition to other fruit production benefits, in-row mulches may impede the development of D. suzukii immatures when larvae leave the fruit to pupate in the soil. This study compared the effects of different mulches (black polypropylene fabric weedmats, sawdust, and wood chips) on temperature and relative humidity (RH), and on adult emergence of D. suzukii from larvae in blueberries and pupae, both above and below the ground surface in blueberry plantings (Vaccinium corymbosum L.). RESULTS: Across regions, both lower larval survival and longer periods with high suboptimal temperatures occurred above the ground in comparison to buried below the ground, regardless of mulch type. Fewer D. suzukii adults emerged from larvae on weedmat mulch at one site, but there was no effect of mulch type on temperature, RH, or D. suzukii emergence at most sites. The relationships between temperature, RH, and the emergence of adults from larvae and pupae varied by region. Natural infestation by D. suzukii in blueberries was lower over weedmat compared to wood-based mulches at one site. Greenhouse experiments showed that larvae burrowed to pupate underneath sawdust mulch, but were unable to pupate underneath a weedmat mulch. CONCLUSIONS: Although weedmats may not modify temperatures or RH enough to consistently affect D. suzukii emergence, they can reduce field suitability for D. suzukii by providing a barrier that prevents larvae from reaching favorable pupation microhabitats underground. © 2019 Society of Chemical Industry.


Assuntos
Mirtilos Azuis (Planta) , Animais , Drosophila , Frutas , Controle de Insetos , Larva , Pupa
8.
Sci Rep ; 9(1): 13370, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527678

RESUMO

Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii's ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.


Assuntos
Drosophila/crescimento & desenvolvimento , Comportamento Alimentar/fisiologia , Larva/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Frutas/crescimento & desenvolvimento , Microbiota , Leveduras/química , Leveduras/metabolismo
9.
Plant Dis ; 103(6): 1189-1195, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30964416

RESUMO

Brown marmorated stink bug (Halyomorpha halys Stål) is an invasive agricultural pest that causes severe damage to many crops. To determine potential associations between H. halys feeding damage, Fusarium infection, and mycotoxin contamination in field corn, a field survey was conducted in eight counties in Virginia. Results indicated an association between H. halys feeding damage and fumonisin contamination. Subsequent field experiments in Delaware, Maryland, and Virginia examined the ability of H. halys to increase Fusarium verticillioides (Sacc.) Nirenberg infection and fumonisin concentrations in corn. At the milk stage, H. halys (0 or 4 adults) and Fusarium (with or without F. verticillioides inoculum) treatments were applied to bagged ears in a two by two factorial randomized complete block design with 12 replicates. H. halys treatments increased levels of feeding damage (P < 0.0001) and Fusarium infection (P = 0.0380). Interaction between H. halys and Fusarium treatments influenced severity of infection (P = 0.0018) and fumonisin concentrations (P = 0.0360). Results suggest H. halys has the ability to increase both Fusarium infection and fumonisin concentrations in field corn. Further studies are needed to understand mechanisms by which H. halys increases fumonisin and to develop management strategies to mitigate impacts of H. halys on field corn in the region.


Assuntos
Fumonisinas , Fusarium , Hemípteros , Zea mays , Animais , Delaware , Fumonisinas/análise , Fusarium/química , Fusarium/fisiologia , Hemípteros/química , Hemípteros/microbiologia , Maryland , Virginia , Zea mays/química , Zea mays/microbiologia
10.
Pest Manag Sci ; 75(4): 969-978, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30192045

RESUMO

BACKGROUND: Nearly all corn seed in the US is coated with neonicotinoid insecticides to protect against soil and foliar arthropod pests. Exposure in the soil and the systemic activity in the plant can pose non-target risks. We assessed the community-level effects of clothianidin-treated seed on the diversity and abundance of arthropod communities in a no-till corn agroecosystem over a single growing season. RESULTS: Epigeal and foliage-dwelling communities were disturbed by the clothianidin seed treatment, with significant negative and positive changes in taxa abundances. Clothianidin reduced the abundance of minute pirate bugs by 66.2%, lady beetles by 44.7%, ants by 43.4%, ground beetle adults and larvae by 31.7%, and rove beetles by 44.1% during the early corn growth stages. Herbivores, particularly thrips, were more negatively affected by clothianidin than other trophic groups. In contrast, some groups, such as collembolans and leafhoppers, exhibited significantly higher abundances in the seed treated plots. CONCLUSION: Clothianidin primarily influenced arthropod communities during the 4 weeks following planting, with disruptions to major natural enemy taxa, but communities showed trends toward recovery at the later corn stages. While the insecticide suppressed multiple herbivores, none were economically damaging to corn; thus, the pest suppression benefits of clothianidin observed in this study did not justify the non-target impacts. © 2018 Society of Chemical Industry.


Assuntos
Artrópodes/efeitos dos fármacos , Biodiversidade , Guanidinas , Inseticidas , Neonicotinoides , Sementes , Tiazóis , Zea mays , Animais , Guanidinas/farmacologia , Guanidinas/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Maryland , Neonicotinoides/farmacologia , Neonicotinoides/toxicidade , Tiazóis/farmacologia , Tiazóis/toxicidade
11.
Pest Manag Sci ; 73(6): 1083-1090, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27943618

RESUMO

BACKGROUND: The spotted wing drosophila (SWD), Drosophila suzukii (Matsumura), is an invasive vinegar fly with a preference for infesting commercially viable berries and stone fruits. SWD infestations can reduce yields significantly, necessitating additional management activities. This analysis estimates economic losses in the California raspberry industry that have resulted from the SWD invasion. RESULTS: California raspberry producers experienced considerable revenue losses and management costs in the first years following SWD's invasion of North America. Conventional producers have since developed effective chemical management programs, virtually eliminating revenue losses due to SWD and reducing the cost of management to that of purchasing and applying insecticides more often. Organic raspberry producers, who do not have access to the same chemical controls, continue to confront substantial SWD-related revenue losses. These losses can be mitigated only by applying expensive insecticides registered for organic use and by performing labor-intensive field sanitation. CONCLUSION: SWD's invasion into North America has caused extensive crop losses to berry and cherry crops in California and elsewhere. Agricultural producers and researchers have responded quickly to this pest by developing management programs that significantly reduce revenue losses. Economic losses are expected to continue to fall as producers learn to manage SWD more efficiently and as new control tactics become available. © 2016 Society of Chemical Industry.


Assuntos
Produtos Agrícolas/economia , Drosophila , Controle de Insetos/economia , Rubus/parasitologia , Animais , California , Controle de Insetos/métodos , Inseticidas/economia , Agricultura Orgânica/economia , Agricultura Orgânica/métodos
12.
J Pest Sci (2004) ; 89: 653-665, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471438

RESUMO

Drosophila suzukii causes economic damage to berry and stone fruit worldwide. Laboratory-generated datasets were standardized and combined on the basis of degree days (DD), using Gompertz and Cauchy curves for survival and reproduction. Eggs transitioned to larvae at 20.3 DD; larvae to pupae at 118.1 DD; and pupae to adults at 200 DD. All adults are expected to have died at 610 DD. Oviposition initiates at 210 DD and gradually increases to a maximum of 15 eggs per DD at 410 DD and subsequently decreases to zero at 610 DD. These data were used as the basis for a DD cohort-level population model. Laboratory survival under extreme temperatures when DD did not accumulate was described by a Gompertz curve based on calendar days. We determined that the initiation of the reproductive period of late dormant field-collected female D. suzukii ranged from 50 to 800 DD from January 1. This suggests that D. suzukii females can reproduce early in the season and are probably limited by availability of early host plants. Finally, we used the DD population model to examine hypothetical stage-specific mortality effects of IPM practices from insecticides and parasitoids at the field level. We found that adulticides applied during the early season will result in the largest comparative population decrease. It is clear from model outputs that parasitism levels comparable to those found in field studies may have a limited effect on population growth. Novel parasitoid guilds could therefore be improved and would be valuable for IPM of D. suzukii.

13.
J Econ Entomol ; 108(2): 683-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470179

RESUMO

Amyelois transitella (Walker) (Lepidoptera: Pyralidae) and Anarsia lineatella Zeller (Lepidoptera: Gelechiidae) are key Lepidoptera pests of almonds in California. Spring insecticide applications (early to mid-May) targeting either insect were not usually recommended because of the potential to disrupt natural enemies when broad-spectrum organophosphates and pyrethroids were applied. The registration of reduced risk compounds such as chlorantraniliprole, methoxyfenozide, and spinetoram, which have a higher margin of safety for natural enemies, makes spring (early to mid-May) application an acceptable control approach. We examined the efficacy of methoxyfenozide, spinetoram, and chlorantraniliprole at three spring application timings including the optimum spring timing for both A. lineatella and A. transitella in California almonds. Our study also examined the possibility of reducing larval populations of A. lineatella and A. transitella simultaneously with a single spring insecticide application. There were no significant differences in the field efficacy of insecticides targeting either A. lineatella or A. transitella, depending on application timing for the three spring timings examined in this study. In most years (2009-2011), all three timings for each compound resulted in significantly less A. transitella and A. lineatella damage when compared with an untreated control, though there was some variation in efficacy between the two species. Early to mid-May applications of the reduced-risk insecticides chlorantraniliprole and spinetoram can be used to simultaneously target A. transitella and A. lineatella with similar results across the potential timings.


Assuntos
Inseticidas/administração & dosagem , Mariposas , Animais , Feminino , Hidrazinas/administração & dosagem , Hormônios Juvenis/administração & dosagem , Macrolídeos/administração & dosagem , Prunus dulcis , Estações do Ano , ortoaminobenzoatos/administração & dosagem
14.
Sci Rep ; 5: 14059, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26391997

RESUMO

Drosophila have evolved strong mutualistic associations with yeast communities that best support their growth and survival, resulting in the development of novel niches. It has been suggested that flies recognize their cognate yeasts primarily based on the rich repertoire of volatile organic compounds (VOCs) derived from the yeasts. Thus, it remained an exciting avenue to study whether fly spp. detect and discriminate yeast strains based on odor alone, and if so, how such resolution is achieved by the olfactory system in flies. We used two fly species known to exploit different niches and harboring different yeasts, D. suzukii (a pest of fresh fruit) and D. melanogaster (a saprophytic fly and a neurogenetic model organism). We initially established the behavioral preference of both fly species to six Drosophila-associated yeasts; then chemically analyzed the VOC profile of each yeast which revealed quantitative and qualitative differences; and finally isolated and identified the physiologically active constituents from yeast VOCs for each drosophilid that potentially define attraction. By employing chemical, behavioral, and electrophysiological analyses, we provide a comprehensive portrait of the olfactory neuroethological correlates underlying fly-yeast coadaptation in two drosophilids with distinct habitats.


Assuntos
Drosophila/microbiologia , Drosophila/fisiologia , Odorantes , Compostos Orgânicos Voláteis , Leveduras/química , Animais , Leveduras/classificação
15.
Environ Entomol ; 44(5): 1449-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26314019

RESUMO

The vinegar fly, Drosophila suzukii (Diptera: Drosophilidae), is a recent invader in North America that has become a serious threat to small fruit production. It was first detected in California in 2008 and in Washington state in 2009. In this study, D. suzukii populations from the area of the original detection on California's central coast and from eastern Washington, the United States, were sampled over a 3-year period to determine genetic variation in both using microsatellite markers. Six different loci were successfully amplified and included in the analysis. These loci included nanos, elf1, antennapedia, mastermind, z600, and tenA. The population from eastern Washington was highly monomorphic with one locus, mastermind, having multiple alleles. There was greater genetic variation in the coastal California population with all loci having multiple alleles, with the exception of tenA. Owing to the relatively low levels of genetic variation in the eastern Washington population compared with the coastal California population, it appears that the D. suzukii population in the eastern Washington region has undergone a significant bottleneck.


Assuntos
Drosophila/genética , Repetições de Microssatélites/genética , Animais , California , Variação Genética , Espécies Introduzidas , Washington
16.
Environ Entomol ; 42(6): 1348-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24252375

RESUMO

Drosophila suzukii (Matsumura), an invasive pest of small and stone fruits, has been recently detected in 39 states of the United States, Canada, Mexico, and Europe. This pest attacks ripening fruit, causing economic losses including increased management costs and crop rejection. Ongoing research aims to improve the efficacy of monitoring traps. Studies were conducted to evaluate how physical trap features affect captures of D. suzukii. We evaluated five colors, two bait surface areas, and a top and side position for the fly entry point. Studies were conducted at 16 sites spanning seven states and provinces of North America and nine crop types. Apple cider vinegar was the standard bait in all trap types. In the overall analysis, yellow-colored traps caught significantly more flies than clear, white, and black traps; and red traps caught more than clear traps. Results by color may be influenced by crop type. Overall, the trap with a greater bait surface area caught slightly more D. suzukii than the trap with smaller area (90 vs. 40 cm(2)). Overall, the two traps with a side-mesh entry, with or without a protective rain tent, caught more D. suzukii than the trap with a top-mesh entry and tent.


Assuntos
Drosophila , Controle de Insetos/instrumentação , Animais , Cor , Feminino , Masculino
17.
G3 (Bethesda) ; 3(12): 2257-71, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24142924

RESUMO

Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Genoma de Inseto , Animais , Evolução Biológica , Códon , Elementos de DNA Transponíveis , Feminino , Expressão Gênica , Internet , Masculino , Anotação de Sequência Molecular , Filogenia , Transcriptoma , Navegador
18.
PLoS One ; 8(7): e68472, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861907

RESUMO

Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between 'summer' and 'winter' conditions due to differences in photoperiod and temperature. In the 'summer', D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the 'winter', activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as insecticide timing and efficacy are crucial considerations for pest management. However, field research is necessary for extrapolation to agricultural settings.


Assuntos
Ritmo Circadiano , Drosophila/efeitos dos fármacos , Drosophila/fisiologia , Inseticidas/toxicidade , Transcriptoma , Animais , Meio Ambiente , Feminino , Inativação Metabólica/genética , Controle de Insetos , Masculino , Atividade Motora/efeitos dos fármacos , Estações do Ano
19.
J Econ Entomol ; 106(3): 1365-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23865203

RESUMO

ALaboratory and field studies are reported that assess navel orangeworm (Amyelois transitella (Walker)) development and damage on 11 almond varieties that represent both expected and outlying hull split and shell seal A. transitella damage. Twenty neonate larvae were introduced to almonds of three treatments for each variety: scratched (1 mm scratch through the pellicle), shelled (shell removed but pellicle intact), and unshelled (shell intact and exhibiting the tightest shell seal for the variety). Success was evaluated as moth emergence and degree-days (DD) to emergence. In 2010-2011 and 2011-2012, 10 replicate rows containing randomized strands of 20 unshelled, uninfested almonds from each variety were placed in the field for both the fall and spring A. transitella flight. The almonds were returned to the lab before the initiation of the second spring A. transitella flight and categorized by presumed cause of damage (bird damage, A. transitella damage, or both types of damage). Damage, variety, and their interaction significantly impacted A. transitella survival and DDs to emergence in male moths. Female moth DDs to emergence were significantly impacted by damage alone. Damage from birds and A. transitella damage were positively correlated, and A. transitella damage associated with bird damage was more common than A. transitella damage alone. Nonconspecific damage may have a significant impact on A. transitella populations in the field, and bird damage may have repercussions beyond its direct impact on marketable yield.


Assuntos
Mariposas/fisiologia , Prunus/crescimento & desenvolvimento , Animais , California , Comportamento Alimentar , Feminino , Controle de Insetos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mariposas/crescimento & desenvolvimento , Prunus/genética , Estações do Ano , Caracteres Sexuais
20.
Exp Appl Acarol ; 61(2): 183-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23446744

RESUMO

Pyrethroid insecticides are generally regarded as acutely toxic to predatory phytoseiid mites; however, persistence of hull split spray pyrethroid residues on almond trees and their effects on phytoseiids have not been quantified over time. Hull split, the separation of the almond hull along the suture, exposes the new crop nuts to infestation by Amyelois transitella (Walker) larvae, and is the preferred timing for insecticides applied for their control. Galendromus occidentalis (Nesbitt) is the most important phytoseiid biocontrol agent for web-spinning spider mites in California (USA) almond orchards, and the impact of bifenthrin and λ-cyhalothrin pyrethroid residue on their survival, fertility, and fecundity was determined. The total effects of direct contact with esfenvalerate, permethrin, bifenthrin and λ-cyhalothrin were also evaluated for comparison. The total effects (E) of direct contact treatments of the four pyrethroids ranged from 77.8 % for esfenvalerate to 98.8 % for bifenthrin. Both bifenthrin and λ-cyhalothrin twig residue would be considered harmful (IOBC class 4) following field application at hull split timing. Bifenthrin twig residue would be considered slightly harmful (IOBC class 2) for up to 3.5 months and harmless (IOBC class 1) after 6 months. λ-cyhalothrin residue would be considered moderately harmful (IOBC class 3) for up to 3.5 months following application and harmless (IOBC class 1) after 6 months. Bifenthrin and λ-cyhalothrin twig residue on treated trees significantly reduced G. occidentalis female survival for up to 6 months post-treatment, however total effects (E) classify these residues as harmless (IOBC class 1) after 6 months. Harmful effects of direct and residual exposure following application have implications for the use of these pyrethroids in an integrated mite management program for perennial crops.


Assuntos
Ácaros e Carrapatos/efeitos dos fármacos , Reativadores da Colinesterase/farmacologia , Endopeptidases/farmacologia , Piretrinas/farmacologia , Animais , Feminino , Controle Biológico de Vetores , Resíduos de Praguicidas , Comportamento Predatório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA