Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hepatology ; 59(1): 296-306, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23813495

RESUMO

UNLABELLED: Interleukin (IL)-17 is a proinflammatory and fibrogenic cytokine mainly produced by T-helper (Th)17 lymphocytes, together with the hepatoprotective and antifibrogenic cytokine, IL-22. Cannabinoid receptor 2 (CB2) is predominantly expressed in immune cells and displays anti-inflammatory and antifibrogenic effects. In the present study, we further investigated the mechanism underlying antifibrogenic properties of CB2 receptor and explored its effect on the profibrogenic properties of IL-17. After bile duct ligation (BDL), the hepatic expression of Th17 markers and IL-17 production were enhanced in CB2(-/-) mice, as compared to wild-type (WT) counterparts, and correlated with increased fibrosis in these animals. In contrast, IL-22-induced expression was similar in both animal groups. Inhibition of Th17 differentiation by digoxin lowered Th17 marker gene expression and IL-17 production and strongly reduced liver fibrosis in CB2(-/-) BDL mice. In vitro, differentiation of CD4(+) naïve T cells into Th17 lymphocytes was decreased by the CB2 agonist, JWH-133, and was associated with reduced Th17 marker messenger RNA expression and IL-17 production, without modification of IL-22 release. The inhibitory effect of JWH-133 on IL-17 production relied on signal transducer and activator of transcription (STAT)5 phosphorylation. Indeed, STAT5 phosphorylation and translocation into the nucleus was enhanced in JWH133-treated Th17 lymphocytes, and the addition of a STAT5 inhibitor reversed the inhibitory effect of the CB2 agonist on IL-17 production, without affecting IL-22 levels. Finally, in vitro studies also demonstrated that CB2 receptor activation in macrophages and hepatic myofibroblasts blunts IL-17-induced proinflammatory gene expression. CONCLUSION: These data demonstrate that CB2 receptor activation decreases liver fibrosis by selectively reducing IL-17 production by Th17 lymphocytes via a STAT5-dependent pathway, and by blunting the proinflammatory effects of IL-17 on its target cells, while preserving IL-22 production.


Assuntos
Interleucina-17/metabolismo , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Células Th17/metabolismo , Animais , Ductos Biliares , Interleucinas/metabolismo , Ligadura , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/fisiologia , Fator de Transcrição STAT5/metabolismo , Interleucina 22
2.
Hepatology ; 59(5): 1998-2009, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24089324

RESUMO

UNLABELLED: Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.


Assuntos
Hepatite/etiologia , Cirrose Hepática Experimental/etiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Tetracloreto de Carbono/toxicidade , Células Estreladas do Fígado/fisiologia , Hepatite/tratamento farmacológico , Humanos , Cirrose Hepática Experimental/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases
3.
Am J Pathol ; 180(6): 2284-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22507836

RESUMO

The mechanisms of podocyte disorders in cases of idiopathic nephrotic syndrome (INS) are complex and remain incompletely elucidated. The abnormal regulation of NF-κB may play a key role in the pathophysiology of these podocyte diseases, but at present, NF-κB has not been thoroughly investigated. In this study, we report that induction of c-mip in podocytes of patients with INS is associated with a down-regulation of RelA, a potent antiapoptotic factor that belongs to the NF-κB family. Overexpression of c-mip in differentiated podocytes promotes apoptosis by inducing caspase-3 activity and up-regulating the proapoptotic protein Bax, whereas the overall levels of the antiapoptotic protein Bcl-2 was concomitantly decreased. The associated overexpression of RelA prevented the proapoptotic effects of c-mip. In addition, the targeted induction of c-mip in podocytes in vivo inhibited the expression of the RelA protein and increased the Bax/Bcl-2 ratio. The expression of both c-mip and active caspase-3 increased in focal and segmental glomerulosclerosis biopsies, and both proteins displayed a close spatial relationship. These results suggest that alterations in NF-κB activity might result from the up-regulation of c-mip and are likely to contribute to podocyte disorders in cases of INS.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/fisiologia , NF-kappa B/metabolismo , Síndrome Nefrótica/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Animais , Proteínas de Transporte/biossíntese , Caspase 3/metabolismo , Linhagem Celular , Regulação para Baixo/fisiologia , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Síndrome Nefrótica/patologia , Podócitos/patologia , Fator de Transcrição RelA/biossíntese , Fator de Transcrição RelA/genética , Regulação para Cima/fisiologia
4.
Br J Pharmacol ; 163(4): 876-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21366549

RESUMO

BACKGROUND AND PURPOSE: The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent chloride channel in the plasma membrane of epithelia whose mutation is the cause of the genetic disease cystic fibrosis (CF). The most frequent CFTR mutation is deletion of Phe(508) and this mutant protein (delF508CFTR) does not readily translocate to the plasma membrane and is rapidly degraded within the cell. We hypothesized that treating epithelial cells with resveratrol, a natural polyphenolic, phyto-ooestrogenic compound from grapes, could modulate both the expression and localization of CFTR. EXPERIMENTAL APPROACH: Cells endogenously expressing CFTR (MDCK1 and CAPAN1 cells) or delF508CFTR (CFPAC1 and airway epithelial cells, deriving from human bronchial biopsies) were treated with resveratrol for 2 or 18 h. The effect of this treatment on CFTR and delF508CFTR expression and localization was evaluated using RT-PCR, Western blot and immunocytochemistry. Halide efflux was measured with a fluorescent dye and with halide-sensitive electrodes. Production of interleukin-8 by these cells was assayed by ELISA. KEY RESULTS: Resveratrol treatment increased CFTR expression or maturation in immunoblotting experiments in MDCK1 cells or in CFPAC1 cells. Indirect immunofluorescence experiments showed a shift of delF508CFTR localization towards the (peri)-membrane area in CFPAC1 cells and in human airway epithelial cells. A cAMP-dependent increase in membrane permeability to halide was detected in resveratrol-treated CFPAC1 cells, and was inhibited by a selective inhibitor of CFTR. CONCLUSION AND IMPLICATIONS: These results show that resveratrol modulated CFTR expression and localization and could rescue cAMP-dependent chloride transport in delF508CFTR cells.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Estilbenos/farmacologia , Animais , Transporte Biológico , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cães , Células Epiteliais/metabolismo , Humanos , Interleucina-8/biossíntese , Interleucina-8/genética , Interleucina-8/metabolismo , Mutação , Resveratrol
5.
Cell Physiol Biochem ; 21(1-3): 75-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18209474

RESUMO

The CFTR protein, encoded by the gene whose mutations induce Cystic Fibrosis, is an anion channel devoted mainly to chloride and bicarbonate transmembrane transport, but which also regulates transport of several other ions. Moreover, it is implicated in the cell response to inflammation, and, reciprocally, cftr gene expression is modulated by inflammatory stimuli and transduction pathways. Looking for a control of CFTR expression by ionic conditions, we investigated the effect of altered extracellular bicarbonate ion concentration on CFTR expression in human pulmonary Calu-3 cells. We found that basal cftr gene transcription is enhanced when extracellular HCO(3)(-) concentration increases from 0 to 25 mmol/l. The transduction pathway controlled by these extracellular [HCO(3)(-)] variations includes cAMP production linked to the stimulation of soluble adenylyl cyclase (sAC), and nuclear accumulation of the transcription factor, CREB. Basal membrane content in CFTR protein exhibits the same variations as cftr mRNA in cells incubated in the presence of extracellular [HCO(3)(-)] between 0 and 25 mmol/l, and is also decreased by inhibiting sAC in the presence of HCO(3)(-). These results show that bicarbonate-controlled sAC stimulation must be taken into account in cell physiology and that basal CFTR expression depends on an ionic parameter.


Assuntos
Adenilil Ciclases/metabolismo , Bicarbonatos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/citologia , Pulmão/enzimologia , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
6.
J Bacteriol ; 189(24): 9090-100, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921289

RESUMO

The family of ammonia and ammonium channel proteins comprises the Amt proteins, which are present in all three domains of life with the notable exception of vertebrates, and the homologous Rh proteins (Rh50 and Rh30) that have been described thus far only in eukaryotes. The existence of an RH50 gene in bacteria was first revealed by the genome sequencing of the ammonia-oxidizing bacterium Nitrosomonas europaea. Here we have used a phylogenetic approach to study the evolution of the N. europaea RH50 gene, and we show that this gene, probably as a component of an integron cassette, has been transferred to the N. europaea genome by horizontal gene transfer. In addition, by functionally characterizing the Rh50(Ne) protein and the corresponding knockout mutant, we determined that NeRh50 can mediate ammonium uptake. The RH50(Ne) gene may thus have replaced functionally the AMT gene, which is missing in the genome of N. europaea and may be regarded as a case of nonorthologous gene displacement.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Nitrosomonas europaea/genética , Nitrosomonas europaea/fisiologia , Evolução Molecular , Deleção de Genes , Filogenia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA