Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 157(7): 074103, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35987597

RESUMO

The ab initio GW plus Bethe-Salpeter equation (GW-BSE, where G is the one particle Green's function and W is the screened Coulomb interaction) approach has emerged as a leading method for predicting excitations in both solids and molecules with a predictive power contingent upon several factors. Among these factors are the (1) generalized Kohn-Sham eigensystem used to construct the GW self-energy and to solve the BSE and (2) the efficacy and suitability of the Tamm-Dancoff approximation. Here, we present a detailed benchmark study of low-lying singlet excitations from a generalized Kohn-Sham (gKS) starting point based on an optimally tuned range-separated hybrid (OTRSH) functional. We show that the use of this gKS starting point with one-shot G0W0 and G0W0-BSE leads to the lowest mean absolute errors (MAEs) and mean signed errors (MSEs), with respect to high-accuracy reference values, demonstrated in the literature thus far for the ionization potentials of the GW100 benchmark set and for low-lying neutral excitations of Thiel's set molecules in the gas phase, without the need for self-consistency. The MSEs and MAEs of one-shot G0W0-BSE@OTRSH excitation energies are comparable to or lower than those obtained with other functional starting points after self-consistency. Additionally, we compare these results with linear-response time-dependent density functional theory (TDDFT) calculations and find GW-BSE to be superior to TDDFT when calculations are based on the same exchange-correlation functional. This work demonstrates tuned range-separated hybrids used in combination with GW and GW-BSE can greatly suppress starting point dependence for molecules, leading to accuracy similar to that for higher-order wavefunction-based theories for molecules without the need for costlier iterations to self-consistency.

2.
Nat Mater ; 17(7): 625-632, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867169

RESUMO

Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe2(BDP)3 (0 ≤ x ≤ 2; BDP2- = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe2(BDP)3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe2(BDP)3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.

3.
J Am Chem Soc ; 140(20): 6278-6287, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29741876

RESUMO

Creating artificial systems that mimic and surpass those found in nature is one of the great challenges of modern science. In the context of photosynthetic light harvesting, the difficulty lies in attaining utmost control over the energetics, positions and relative orientations of chromophores in densely packed arrays to transfer electronic excitation energy to desired locations with high efficiency. Toward achieving this goal, we use a highly versatile biomimetic protein scaffold from the tobacco mosaic virus coat protein on which chromophores can be attached at precise locations via linkers of differing lengths and rigidities. We show that minor linker modifications, including switching chiral configurations and alkyl chain shortening, lead to significant lengthening of the ultrafast excited state dynamics of the system as the linkers are shortened and rigidified. Molecular dynamics simulations provide molecular-level detail over how the chromophore attachment orientations, positions, and distances from the protein surface lead to the observed trends in system dynamics. In particular, we find that short and rigid linkers are able to sandwich water molecules between chromophore and protein, leading to chromophore-water-protein supracomplexes with intricately coupled dynamics that are highly dependent on their local protein environment. In addition, cyclohexyl-based linkers are identified as ideal candidates to retain rotational correlations over several nanoseconds and thus lock relative chromophore orientations throughout the lifetime of an exciton. Combining linker engineering with judicious placement of chromophores on the hydrated protein scaffold to exploit different chromophore-bath couplings provides a clear and effective path to producing highly controllable artificial light-harvesting systems that can increasingly mimic their natural counterparts, thus aiding to elucidate natural photosynthetic mechanisms.


Assuntos
Materiais Biomiméticos/química , Proteínas do Capsídeo/química , Corantes/química , Complexos de Proteínas Captadores de Luz/química , Vírus do Mosaico do Tabaco/química , Biomimética , Reagentes de Ligações Cruzadas/química , Cicloexanos/química , Transferência de Energia , Simulação de Dinâmica Molecular , Pigmentos Biológicos/química , Teoria Quântica , Água/química
4.
J Chem Phys ; 146(19): 194108, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28527441

RESUMO

The accurate prediction of singlet and triplet excitation energies is an area of intense research of significant fundamental interest and critical for many applications. Most calculations of singlet and triplet energies use time-dependent density functional theory (TDDFT) in conjunction with an approximate exchange-correlation functional. In this work, we examine and critically assess an alternative method for predicting low-lying neutral excitations with similar computational cost, the ab initio Bethe-Salpeter equation (BSE) approach, and compare results against high-accuracy wavefunction-based methods. We consider singlet and triplet excitations of 27 prototypical organic molecules, including members of Thiel's set, the acene series, and several aromatic hydrocarbons exhibiting charge-transfer-like excitations. Analogous to its impact in TDDFT, we find that the Tamm-Dancoff approximation (TDA) overcomes triplet instabilities in the BSE approach, improving both triplet and singlet energetics relative to higher level theories. Finally, we find that BSE-TDA calculations built on effective DFT starting points, such as those utilizing optimally tuned range-separated hybrid functionals, can yield accurate singlet and triplet excitation energies for gas-phase organic molecules.

5.
J Chem Theory Comput ; 12(6): 2834-42, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27123935

RESUMO

Charged excitations of the oligoacene family of molecules, relevant for astrophysics and technological applications, are widely studied and therefore provide an excellent system for benchmarking theoretical methods. In this work, we evaluate the performance of many-body perturbation theory within the GW approximation relative to new high-quality CCSD(T) reference data for charged excitations of the acenes. We compare GW calculations with a number of hybrid density functional theory starting points and with eigenvalue self-consistency. Special focus is given to elucidating the trend of GW-predicted excitations with molecule length increasing from benzene to hexacene. We find that GW calculations with starting points based on an optimally tuned range-separated hybrid (OTRSH) density functional and eigenvalue self-consistency can yield quantitative ionization potentials for the acenes. However, for larger acenes, the predicted electron affinities can deviate considerably from reference values. Our work paves the way for predictive and cost-effective GW calculations of charged excitations of molecules and identifies certain limitations of current GW methods used in practice for larger molecules.

6.
J Chem Phys ; 142(24): 244101, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26133404

RESUMO

The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green's function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for neutral electronic excitations of organic molecules exist. Here, we study the performance of the BSE for the 28 small molecules in Thiel's widely used time-dependent density functional theory benchmark set [Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. We observe that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach. We find that this starting point dependence is mainly introduced through the quasiparticle energies obtained at the intermediate GW step and that with a judicious choice of starting mean-field, singlet excitation energies obtained from BSE are in excellent quantitative agreement with higher-level wavefunction methods. The quality of the triplet excitations is slightly less satisfactory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA