Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36829630

RESUMO

Single ventricle (SV) anomalies account for one-fourth of all congenital heart disease cases. The existing palliative treatment for this anomaly achieves a survival rate of only 50%. To reduce the trauma associated with surgical management, the hybrid comprehensive stage II (HCSII) operation was designed as an alternative for a select subset of SV patients with the adequate antegrade aortic flow. This study aims to provide better insight into the hemodynamics of HCSII patients utilizing a multiscale Computational Fluid Dynamics (CFD) model and a mock flow loop (MFL). Both 3D-0D loosely coupled CFD and MFL models have been tuned to match baseline hemodynamic parameters obtained from patient-specific catheterization data. The hemodynamic findings from clinical data closely match the in-vitro and in-silico measurements and show a strong correlation (r = 0.9). The geometrical modification applied to the models had little effect on the oxygen delivery. Similarly, the particle residence time study reveals that particles injected in the main pulmonary artery (MPA) have successfully ejected within one cardiac cycle, and no pathological flows were observed.

2.
JTCVS Open ; 7: 308-323, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36003745

RESUMO

Background: The hybrid comprehensive stage 2 (HCS2) procedure is a novel palliative operation applicable to a select subset of single ventricle patients with adequate native antegrade aortic flow to the upper body. Flow to the descending aorta, through the pulmonary outlet and ductal arch, is influenced by a stented intrapulmonary baffle connecting the branch pulmonary arteries. We used computational fluid dynamics (CFD) to elucidate the hemodynamic characteristics of this reconstruction. Methods: We used multiscale CFD analysis of a synthetic, patient-derived HCS2 anatomic configuration with unsteady laminar flow conditions and a non-Newtonian blood model to quantify the resultant hemodynamics. The 3-dimensional CFD model was coupled to a 0-dimensional lumped parameter model of the peripheral circulation to determine the required boundary conditions. Results: For the specific anatomy studied, the intrapulmonary baffle did not obstruct flow from the pulmonary trunk to ductal arch as long as the distance between the anterior pulmonary artery wall and baffle wall exceeded ∼7 mm. Vortex shedding off of the baffle wall did not develop, because of the short distance to the ductal arch. The stented baffle experienced significantly uneven "inward" loading from the systemic side. Pulmonary outlet flow separation distal to the baffle produced a low-speed recirculation region. Conclusions: Hemodynamic patterns in this complex anatomy are generally favorable. Low flow recirculation could be mitigated by preoperative shape optimization. Calculated inward stresses on the pulmonary baffle can be used in the future to study baffle stent deformation, which is expected to be small.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA