Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 236(5): 1936-1950, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36128644

RESUMO

Plant-soil feedbacks (PSFs) underlying grassland plant richness and productivity are typically coupled with nutrient availability; however, we lack understanding of how restoration measures to increase plant diversity might affect PSFs. We examined the roles of sward disturbance, seed addition and land-use intensity (LUI) on PSFs. We conducted a disturbance and seed addition experiment in 10 grasslands along a LUI gradient and characterized plant biomass and richness, soil microbial biomass, community composition and enzyme activities. Greater plant biomass at high LUI was related to a decrease in the fungal to bacterial ratios, indicating highly productive grasslands to be dominated by bacteria. Lower enzyme activity per microbial biomass at high plant species richness indicated a slower carbon (C) cycling. The relative abundance of fungal saprotrophs decreased, while pathogens increased with LUI and disturbance. Both fungal guilds were negatively associated with plant richness, indicating the mechanisms underlying PSFs depended on LUI. We show that LUI and disturbance affect fungal functional composition, which may feedback on plant species richness by impeding the establishment of pathogen-sensitive species. Therefore, we highlight the need to integrate LUI including its effects on PSFs when planning for practices that aim to optimize plant diversity and productivity.


Assuntos
Biodiversidade , Pradaria , Plantas , Biomassa , Solo , Bactérias , Ecossistema
2.
Sci Total Environ ; 836: 155748, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35526633

RESUMO

Grassland ecosystems provide important ecosystem services such as nutrient cycling and primary production that are affected by land-use intensity. To assess the effects of land-use intensity, operational and sensitive ecological indicators that integrate effects of grassland management on ecosystem processes such as organic matter turnover are needed. Here, we investigated the suitability of measuring the mass loss of standardized tea litter together with extracellular enzyme kinetics as a proxy of litter decomposition in the topsoil of grasslands along a well-defined land-use intensity gradient (fertilization, mowing, grazing) in Central Germany. Tea bags containing either green tea (high-quality litter) or rooibos tea (low-quality litter) were buried in 5 cm soil depth. Litter mass loss was measured after three (early-stage decomposition) and 12 months (mid-stage decomposition). Based on the fluorescence measurement of the reaction product 4-methylumbelliferone, Michaelis-Menten enzyme kinetics (Vmax: potential maximum rate of activity; Km: substrate affinity) of five hydrolases involved in the carbon (C)-, nitrogen (N)- and phosphorus (P)-cycle (ß-glucosidase (BG), cellobiohydrolase (CBH), cellotriohydrolase (CTH), 1,4-ß-N-acetylglucosaminidase (NAG), and phosphatase (PH)) were determined in tea litter bags and in the surrounding soil. The land-use intensity index (LUI), summarizing fertilization, mowing, grazing, and in particular the frequency of mowing were identified as important drivers of early-stage tea litter decomposition. Mid-stage decomposition was influenced by grazing intensity. The higher the potential activity of all measured C-, N- and P-targeting enzymes, the higher was the decomposition of both tea litters in the early-phase. During mid-stage decomposition, individual enzyme parameters (Vmax of CTH and PH, Km of CBH) became more important. The tea bag method proved to be a suitable indicator which allows an easy and cost-effective assessment of land-use intensity effects on decay processes in manged grasslands. In combination with enzyme kinetics it is an appealing approach to identify mechanisms driving litter break down.


Assuntos
Ecossistema , Pradaria , Cinética , Nitrogênio/análise , Folhas de Planta/química , Solo , Chá
3.
Environ Pollut ; 297: 118790, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016983

RESUMO

Glyphosate can be degraded by soil microorganisms rapidly and is impacted by temperature and soil properties. Enhanced temperature and total organic carbon (TOC) as well as reduced pH increased the rate of 13C315N-glyphosate conversion to CO2 and biogenic non-extractable residues (bioNERs) in a Haplic Chernozem (Muskus et al., 2019) and in a Humic Cambisol (Muskus et al., 2020). To date; however, the combined effect of temperature and TOC or pH on microbial community composition and glyphosate degraders in these two soils has not been investigated. Phospholipid fatty acid [PLFA] biomarker analysis combined with 13C labeling was employed to investigate the effect of two soil properties (pH, TOC) and of three temperatures (10 °C, 20 °C, 30 °C) on soil microorganisms. Before incubation, the properties of a Haplic Chernozem and a Humic Cambisol were adjusted to obtain five treatments: (a) Control (Haplic Chernozem: 2.1% TOC and pH 6.6; Humic Cambisol: 3% TOC and pH 7.0), (b) 3% TOC (Haplic Chernozem) or 4% TOC (Humic Cambisol), (c) 4% TOC (Haplic Chernozem) or 5% TOC (Humic Cambisol), (d) pH 6.0 (Haplic Chernozem) or pH 6.5 (Humic Cambisol), and (e) pH 5.5 for both soils. All treatments were amended with 50 mg kg-1 glyphosate and incubated at 10 °C, 20 °C or 30 °C. We observed an increase in respiration, microbial biomass and glyphosate mineralization with incubation temperature. Although respiration and microbial biomass in the Humic Cambisol was higher, the microorganisms in the Haplic Chernozem were more active in glyphosate degradation. Increased TOC shifted the microbiome and the 13C-glyphosate degraders towards Gram-positive bacteria in both soils. However, the abundance of 13C-PLFAs indicative for the starvation of Gram-negative bacteria increased with increasing TOC or decreasing pH at higher temperatures. Gram-negative bacteria thus may have been involved in earlier stages of glyphosate degradation.


Assuntos
Microbiota , Solo , Carbono , Glicina/análogos & derivados , Concentração de Íons de Hidrogênio , Microbiologia do Solo , Temperatura , Glifosato
4.
Sci Total Environ ; 726: 137877, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32481225

RESUMO

Both climate change and agricultural intensification are drivers of global nutrient cycles and biodiversity loss. A potentially great environmental threat can arise when these two drivers interact, for example, when farmers try to compensate reduced soil nutrient availability due to drought by the application of liquid organic fertiliser. As dry soils don't hold back nutrients very well, this approach can lead to nitrate leaching and potentially also to the pollution of drinking water. However, little is known about leaching from dry but fertilised grassland soil, and how this is affected by land use intensity and plant diversity. In this mesocosm study, we transferred 60 grassland sods differing in past land use intensity to a greenhouse and treated them with severe drought, fertilisation and both together. Drought was induced by almost entirely stopping irrigation for seven weeks. Fertilisation was done by three applications of slurry summing up to 168 kg total nitrogen per hectare (111 kg NH4-N). We assessed nutrient leaching risk with ion-exchange resin (IER) bags installed in the soil of all mesocosms. IER bags were retrieved after drought and extracts were analysed for concentrations of nitrate, ammonium, phosphate and potassium. Fertilisation partially buffered drought-induced losses in yield. However, the interaction of fertilisation and drought resulted in a drastic increase in nitrate leaching risk when soils are rewetted (>300%), while neither drought nor fertilisation alone were significant. Ammonium concentrations followed the same trend as nitrate, but less pronounced. Phosphate and potassium concentrations were not affected by the treatments. Past land use was hardly related to soil nutrient concentrations, rather was plant diversity. However, results indicate that plant diversity was not driving nitrate and ammonium concentrations under drought and/or fertilisation. This study reveals grassland fertilisation during drought to be a severe environmental problem due to significantly increased nitrate leaching risk.

5.
Glob Chang Biol ; 26(4): 2403-2420, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31957121

RESUMO

Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decision-making. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi-objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decision-makers, who may have different expectations about the future. When optimizing only socio-economic objectives, the model continues the past trend in deforestation (1975-2015) in the projected land-use allocation (2015-2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio-economic objectives has heterogeneous effects on land-use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%-80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies.

6.
Environ Pollut ; 259: 113767, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31887598

RESUMO

Glyphosate is one of the most used herbicides in the world. The fate of glyphosate in tropical soils may be different from that in soils from temperate regions. In particular, the amounts and types of non-extractable residues (NER) may differ considerably, resulting in different relative contributions of xenoNER (sorbed and sequestered parent compound) and bioNER (biomass residues of degraders). In addition, environmental conditions and agricultural practices leading to total organic carbon (TOC) or pH variation can alter the degradation of glyphosate. The aim of this study is thus to investigate how the glyphosate degradation and turnover are influenced by varying temperature, pH and TOC of sandy loam soil from Colombia. The pH or TOC of a Colombian soil was modified to yield five treatments: control (pH 7.0, TOC 3%), 4% TOC, 5% TOC, pH 6.5, and pH 5.5. Each treatment received 50 mg kg-1 of 13C315N-glyphosate and was incubated at 10 °C, 20 °C and 30 °C for 40 days. Rising temperature increased the mineralization of 13C315N-glyphosate from 13 to 20% (10 °C) to 32-39% (20 °C) and 41-51% (30 °C) and decreased the amounts of extractable 13C315N-glyphosate after 40 days of incubation from 13 to 26% (10 °C) to 4.6-12% (20 °C) and 1.2-3.2% (30 °C). Extractable 13C315N-glyphosate increased with higher TOC and higher pH. Total 13C-NER were similar in all treatments and at all temperatures (47%-60%), indicating that none of the factors studied affected the amount of total 13C-NER. However, 13C-bioNER dominated within the 13C-NER pool in the control and the 4% TOC treatment (76-88% of total 13C-NER at 20 °C and 30 °C), whereas in soil with 5% TOC and pH 6.5 or 5.5 13C-bioNER were lower (47-61% at 20 °C and 30 °C). In contrast, the 15N-bioNER pool was small (between 14 and 39% of the 15N-NER). Thus, more than 60% of 15N-NER is potentially hazardous xenobiotic NER which need careful attention in the future.


Assuntos
Carbono/análise , Poluentes do Solo , Solo/química , Temperatura , Colômbia , Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas , Concentração de Íons de Hidrogênio , Poluentes do Solo/química , Termodinâmica , Glifosato
7.
Sci Total Environ ; 658: 697-707, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30580222

RESUMO

Glyphosate is the best-selling and the most-used broad-spectrum herbicide worldwide. Microbial conversion of glyphosate to CO2 and biogenic non-extractable residues (bioNER) leads to its complete degradation. The degradation of glyphosate may vary in different soils and it depends on environmental conditions and soil properties. To date, the influence of temperature, soil pH and total organic carbon (TOC) on microbial conversion of glyphosate to bioNER has not been investigated yet. The pH or TOC of an agricultural original soil (pH 6.6, TOC 2.1%) was modified using sulfuric acid or farmyard manure (FYM), respectively. Each treatment: original (I), 3% TOC (II), 4% TOC (III), pH 6.0 (IV) and pH 5.5 (V) was amended with 13C315N-glyphosate and incubated at 10 °C, 20 °C and 30 °C for 39 days. The temperature was the main factor controlling the mineralization and the extractable 13C315N-glyphosate, whereas higher TOC content and lower pH resulted in enhanced formation of 13C-bioNER. After 39 days the cumulative mineralization of 13C-glyphosate was in the range of 12-22% (10 °C), 37-47% (20 °C) and 43-54% (30 °C). Extractable residues of 13C-glyphosate were in the range of 10-21% (10 °C) and 4-10% (20 °C and 30 °C); whereas those of 15N-glyphosate were as follows 20-32% (10 °C) and 12-25% (20 °C and 30 °C). The 13C-NER comprised about 53-69% of 13C-mass balance in soils incubated at 10 °C, but 40-50% in soils incubated at 20 °C and 30 °C. The 15N-NER were higher than the 13C-NER and varied between 62% and 74% at 10 °C, between 53% and 81% at 20 °C and 30 °C. A major formation of 13C-bioNER (72-88% of 13C-NER) at 20 °C and 30 °C was noted in soil amended with FYM. An increased formation of 15N-bioNER (14-17% of 15N-NER) was also observed in FYM-amended soil. The xenobiotic 15N-NER had a major share within the 15N-NER and thus need to be considered when assessing the environmental risk of glyphosate-NER.


Assuntos
Carbono/metabolismo , Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Isótopos de Carbono/análise , Fazendas , Glicina/metabolismo , Concentração de Íons de Hidrogênio , Isótopos de Nitrogênio/análise , Compostos Orgânicos/metabolismo , Temperatura , Glifosato
8.
Glob Chang Biol ; 24(7): 2828-2840, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29526033

RESUMO

The intensification of land use constitutes one of the main drivers of global change and alters nutrient fluxes on all spatial scales, causing landscape-level eutrophication and contamination of natural resources. Changes in soil nutrient concentrations are thus indicative for crucial environmental issues associated with intensive land use. We measured concentrations of NO3 -N, NH4 -N, P, K, Mg, and Ca using 1,326 ion-exchange resin bags buried in 20 cm depth beneath the main root zone in 150 temperate grasslands. Nutrient concentrations were related to land use intensity, that is, fertilization, mowing, grazing intensities, and plant diversity by structural equation modeling. Furthermore, we assessed the response of soil nutrients to mechanical sward disturbance and subsequent reseeding, a common practice for grassland renewal. Land use intensity, especially fertilization, significantly increased the concentrations of NO3 -N, NH4 -N, K, P, and also Mg. Besides fertilization (and tightly correlated mowing) intensity, grazing strongly increased NO3 -N and K concentrations. Plant species richness decreased P and NO3 -N concentrations in soil when grassland productivity of the actual year was statistically taken into account, but not when long-term averages of productivity were used. Thus, we assume that, in the actual study year, a distinct drought period might have caused the observed decoupling of productivity from fertilization and soil nutrients. Breaking up the grassland sward drastically increased NO3 -N concentrations (+146%) but reduced NH4 -N, P, and K concentrations, unbalancing soil nutrient stoichiometry and boosting the risk of N leaching. Reseeding the sward after disturbance did not have a short-term effect on nutrient concentrations. We conclude that renewal of permanent grassland should be avoided as far as possible and future grassland management has to strongly rise the effectiveness of fertilization. Additionally, grassland management might have to increasingly taking care of periods of drought, in which nutrient additions might not increase plant growth but potentially only facilitate leaching.


Assuntos
Biodiversidade , Pradaria , Plantas/classificação , Secas , Fenômenos Fisiológicos Vegetais , Solo/química
9.
Nat Commun ; 7: 11877, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27292766

RESUMO

High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services.

10.
Front Microbiol ; 7: 214, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941732

RESUMO

Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

11.
Nat Commun ; 5: 5612, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25425182

RESUMO

Increasing demands for livelihood resources in tropical rural areas have led to progressive clearing of biodiverse natural forests. Restoration of abandoned farmlands could counter this process. However, as aims and modes of restoration differ in their ecological and socio-economic value, the assessment of achievable ecosystem functions and benefits requires holistic investigation. Here we combine the results from multidisciplinary research for a unique assessment based on a normalization of 23 ecological, economic and social indicators for four restoration options in the tropical Andes of Ecuador. A comparison of the outcomes among afforestation with native alder or exotic pine, pasture restoration with either low-input or intense management and the abandoned status quo shows that both variants of afforestation and intense pasture use improve the ecological value, but low-input pasture does not. Economic indicators favour either afforestation or intense pasturing. Both Mestizo and indigenous Saraguro settlers are more inclined to opt for afforestation.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Agricultura Florestal/economia , Pinus/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Equador , Agricultura Florestal/métodos , Árvores/crescimento & desenvolvimento
12.
Oecologia ; 175(1): 375-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532178

RESUMO

Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.


Assuntos
Ecossistema , Microbiologia do Solo , Solo/química , Árvores/microbiologia , Agricultura , Biomassa , Carbono/análise , Equador , Cadeia Alimentar , Fungos , Modelos Lineares , Nitrogênio/análise , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA