Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Dis ; : PDIS07231362RE, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085973

RESUMO

Grapevine trunk diseases are caused by a broad diversity of fungal taxa that have serious impacts on the worldwide viticulture industry due to significant reductions in vineyards yield and lifespan. Field surveys carried out from 2018 to 2022 in California nurseries and young vineyards revealed a high incidence of Fusarium. Since Fusarium species are important pathogens of other perennial crops, the present study aimed to identify and determine the pathogenicity of the Fusarium species on grapevines. Morphology of the fungal colonies coupled with multilocus phylogenetic analyses using nucleotide sequences of the translation elongation factor 1-alpha (tef1) and the RNA polymerase II second largest subunit (rpb2) genes revealed the occurrence of 10 species clustering in six species complexes, namely F. fujikuroi (FFSC), F. oxysporum (FOSC), F. solani (FSSC), F. sambucinum (FSAMSC), F. incarnatum-equiseti (FIESC), and F. tricinctum (FTSC) species complexes. The species F. annulatum (FFSC) was the most prevalent in samples from both symptomatic young vineyards (73.5% incidence) and nursery propagation material (62.5% incidence). Pathogenicity of the 10 most frequent species was confirmed by fulfilling Koch's postulates on living woody tissue of 1103 Paulsen rootstocks. Our results suggest that Fusarium spp. are involved in the development of young vine decline, probably as opportunistic pathogens when grapevines are under stress conditions.

2.
Plant Dis ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822104

RESUMO

Grapevine Trunk Diseases (GTD) are caused by a consortium of fungal pathogens that affect the biological functions of the vascular system of mature and young grapevines (Gramaje et al. 2018). We conducted surveys to profile GTD pathogens in California grapevine nurseries and collected 784 cuttings of cvs. Cabernet Sauvignon and Chardonnay grafted on 1103P rootstock. Several vines exhibited wood necrotic lesions and cankers at the graft union and the root ball (Figure 1A). Symptomatic wood tissues were cultured on PDA medium and after two weeks of incubation at room temperature (22°C), several known GTD pathogens were recovered. We also identified Rhizoctonia from 42 of the 784 vines (5.3% incidence) based on the morphological characteristics of a brown pigmented mycelium (Figure 1B), hyphae branched at a right angle with constrictions at the branch point (Figure 1C) and absence of spores (González García et al., 2006). A subsample of four isolates (DCHG2B, DCSG22R, JCSG9B, and JCHG12B) were randomly selected for further DNA-based taxonomic identification and pathogenicity evaluation to grapevine. The ITS and beta tubulin regions were amplified using the ITS1/ITS4 and B36F/B12R primer sets, respectively (González et al. 2006), and sequences were deposited in the NCBI database (Accession numbers: OR052655, OR052656, OR052657, OR052658 and OR059207, OR059208, OR059209, OR059210). Sequences displayed >99% and >96% identity with the respective ITS and beta tubulin sequences of the binucleate Rhizoctonia AG-G specimen C-653 (González et al. 2006). A phylogenetic tree constructed using the Neighbor-Joining method indicated a 100% bootstrap support with the binucleate Rhizoctonia AG-G (Figure 2). Pathogenicity of the binucleate AG-G Rhizoctonia were confirmed on two separate technical replicates using standard methods. For each replicate, one-year-old rootstock 1103P were wounded with sterile drill bits and inoculated with a single 5 mm diameter agar plug collected from Rhizoctonia growing cultures, while control vines were inoculated with sterile agar. The first replicate lasted 28 weeks with (DCHG2B, DCSG22R) inoculated on seven vines. The second bioassay lasted 24 weeks with two additional isolates (JCSG9B, JCHG12B) inoculated on twelve vines. Rhizoctonia-inoculated vines developed wood symptoms similar to those observed on cuttings in nurseries, with necrotic lesions lengths significantly longer than the controls (First replicate: 3.5  0.4 cm vs. 1.3  0.6 cm; Second replicate: 6.8  0.8 cm vs. 1.1  0.2 cm), based on one-way ANOVA statistical test (P value < 0.05). Rhizoctonia isolates recovery from wood necrotic lesions were confirmed by ITS sequencing, thereby fulfilling Koch's postulate. Several binucleate Rhizoctonia anastomosis groups, including AG-G, have been found to cause root rot and stem necrosis in plant nurseries (Aiello et al., 2017; Rinehart et al., 2007). Rhizoctonia has also been reported to be associated with grapevine nurseries in Europe (Pintos et al., 2018), South Africa (Halleen et al., 2003) and Australia (Walker, 1992). However, the multinucleate Rhizoctonia solani was the only species confirmed to cause root rot on grapevine (Walker, 1992). Our data suggests that the binucleate Rhizoctonia from the AG-G anastomosis group also cause wood necrosis in grapevine. Those findings warrant further studies on the complexity of Rhizoctonia anastomosis groups in nursery and their aggressiveness to grapevine.

3.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052910

RESUMO

In disease-suppressive soil, plants rely upon mutualistic associations between roots and specific microbes for nutrient acquisition and disease suppression. Notably, the transmission of suppressiveness by the cysts of sugar beet cyst nematode from suppressive to conducive soils has been previously observed in greenhouse trials. However, our current understanding of the bacterial assemblages in the cyst, root endosphere and rhizosphere soil is still limited. To obtain insights into these bacterial microbiota assemblages, the bacterial communities inhabiting the plant-associated microhabitats and cysts in soybean cyst nematode (SCN)-suppressive soil were characterized by deep sequencing, using soybean grown under growth room conditions with additional SCN challenge. Clustering analysis revealed that the cyst bacterial community was closer to the root endosphere community than to the rhizosphere and bulk soil communities. Interestingly, the cyst bacterial community was initially established by the consecutive selection of bacterial taxa from the soybean root endosphere. We found a set of potential microbial consortia, such as Pasteuria, Pseudomonas, Rhizobium, and other taxa, that were consistently enriched in the rhizocompartments under SCN challenge, and more abundant in the cysts than in the bulk soil. Our results suggest that the soybean root-associated and cyst microbiota may cause the suppressiveness of SCN in suppressive soil.


Assuntos
Glycine max/microbiologia , Microbiota , Nematoides/microbiologia , Rizosfera , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Nematoides/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Solo/parasitologia , Glycine max/parasitologia
4.
FEMS Microbiol Ecol ; 93(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789537

RESUMO

One of the mechanisms of disease suppressiveness in soils is long-term monoculture (LTM) cropping to dissuade pathogen infestation. However, the linkage between monoculturing and microbial community assemblage in the rhizosphere for disease suppression remains unclear. To decipher this potential relationship, soil samples were collected from seven locations in northeastern China, where LTM (6-38 yr) and short-term monoculture (STM ≤ 5 yr) cropping of soybean showed varying degrees of soil suppressiveness to the soybean cyst nematode (SCN; Heterodera glycines). Using high-throughput pyrosequencing to examine bacterial 16S rRNA and fungal ITS1 genes, we observed substantial variation in the species richness and relative abundance of taxa in the rhizosphere across different sampling sites. At the genus level, the genera Pseudomonas, Purpureocillium and Pochonia, which have been documented to suppress SCN in earlier studies, were much more abundant in LTM soils than in STM soils. Moreover, the relative abundance of several bacterial and fungal genera with metabolic, biocidal and parasitic activities was also monitored in the rhizosphere. In this study, we provide additional evidence that plants shift the structural and functional composition of the rhizosphere microbiota to suppress pathogen infection in LTM cropping soils.


Assuntos
Glycine max/parasitologia , Nematoides/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Rizosfera , Microbiologia do Solo , Animais , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Microbiota , Contagem de Ovos de Parasitas , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Solo/química , Glycine max/microbiologia
5.
G3 (Bethesda) ; 6(11): 3603-3613, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27633791

RESUMO

Mrakia psychrophila is an obligate psychrophilic fungus. The cold adaptation mechanism of psychrophilic fungi remains unknown. Comparative genomics analysis indicated that M. psychrophila had a specific codon usage preference, especially for codons of Gly and Arg and its major facilitator superfamily (MFS) transporter gene family was expanded. Transcriptomic analysis revealed that genes involved in ribosome and energy metabolism were upregulated at 4°, while genes involved in unfolded protein binding, protein processing in the endoplasmic reticulum, proteasome, spliceosome, and mRNA surveillance were upregulated at 20°. In addition, genes related to unfolded protein binding were alternatively spliced. Consistent with other psychrophiles, desaturase and glycerol 3-phosphate dehydrogenase, which are involved in biosynthesis of unsaturated fatty acid and glycerol respectively, were upregulated at 4°. Cold adaptation of M. psychrophila is mediated by synthesizing unsaturated fatty acids to maintain membrane fluidity and accumulating glycerol as a cryoprotectant. The proteomic analysis indicated that the correlations between the dynamic patterns between transcript level changes and protein level changes for some pathways were positive at 4°, but negative at 20°. The death of M. psychrophila above 20° might be caused by an unfolded protein response.

6.
Appl Environ Microbiol ; 82(21): 6317-6325, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542936

RESUMO

Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species.


Assuntos
Hypocreales/genética , Tylenchoidea/microbiologia , Adaptação Fisiológica , Animais , China , Cistos/microbiologia , Europa (Continente) , Variação Genética , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Recombinação Genética , Tylenchoidea/crescimento & desenvolvimento
7.
Sci Rep ; 6: 30047, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436205

RESUMO

The transcription factor SKN7 is a highly conserved protein among fungi and was initially recognized as a response regulator that protects cells from oxidative stress and maintains cell wall integrity in yeast. Orthologs of SKN7 are extensively present in biocontrol agents of plant pathogens, but they had not been functionally characterized. Here, we identified and characterized the transcription factor SKN7 in the nematode endoparasitic fungus Hirsutella minnesotensis. Null mutant lacking HIM-SKN7 (HIM_03620), which was generated by a gene disruption strategy, demonstrated reduced conidiation, increased sensitivity to high temperature, hydrogen peroxide, mannitol and ethanol, and reduced fungal resistance to farnesol. However, over-expression mutant showed increased conidial production, thermotolerance and resistance to farnesol, suggesting that HIM-SKN7 regulates antiapoptotic-like cell death in H. minnesotensis. Moreover, the results showed that in null mutant, H. minnesotensis had decreased endoparasitic ability as compared to wild type and over-expression strain. During the infection process, the relative expression of the HIM-SKN7 gene was significantly induced in the wild type and over-expression strain. The results of the present study advance our understanding of the functions of the SKN7 gene in biocontrol agents, in particular, nematode endoparasitic fungi.


Assuntos
Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Parasita , Hypocreales/genética , Nematoides/microbiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Morte Celular , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Temperatura Alta , Hypocreales/crescimento & desenvolvimento , Hypocreales/metabolismo , Hypocreales/efeitos da radiação , Esporos Fúngicos/crescimento & desenvolvimento , Termotolerância , Fatores de Transcrição/genética
8.
Wei Sheng Wu Xue Bao ; 54(8): 926-35, 2014 Aug 04.
Artigo em Chinês | MEDLINE | ID: mdl-25345025

RESUMO

OBJECTIVE: The aim of this study was to investigate endophytic bacterial diversity of wild soybean varieties with different resistance to soybean cyst nematode(Heterodera glycines) , for deciphering the interactions of soybean cyst nematode with endophytic bacteria. METHODS: After screening wild soybean varieties against race 3 of H. glycines, we investigated endophytic bacterial diversity in root tissues of wild soybean varieties with different resistance to H. glycines using 16S rDNA cloning library and amplified ribosomal DNA restriction analysis. RESULTS: Endophytic bacteria of wild soybean root belonged to 6 bacterial groups, the clones belonging to group Proteobacteria and Firmicutes were the endophyte dominants in wild soybean with 46.8% and 13.6% of total clones, respectively. Actinobacteria, Bacteroidetes, Acidobacteria, Deincoccus-Thermus and Archaea were less represented. 18.8% of clone sequences were similar to those of uncultured bacteria in the environment. The bacterial diversity was higher in H. glycines-Resistant than -Susceptible wild soybean varieties, and the dominant group was different between H. glycines-Resistant and -Susceptible wild soybean varieties. Mesorhizobium tamadayense, Enterobacter ludwigii and Bacillus megaterium were the main bacterial groups in special operational taxonomic units (OTUs) of H. glycines-Resistant wild soybean variety. CONCLUSIONS: By 16S rDNA cloning library and amplified ribosomal DNA restriction analysis, the diversity of dominant group of endophytic bacteria in root tissues has difference among H. glycines-Resistant and -Susceptible wild soybean varieties.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Endófitos/isolamento & purificação , Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Endófitos/classificação , Endófitos/genética , Dados de Sequência Molecular , Glycine max/microbiologia
9.
Fungal Genet Biol ; 53: 42-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23357354

RESUMO

Coniothyrium minitans is a bio-control agent of Sclerotinia spp., and has the ability to produce abundant conidia to infect the host fungi. Mediation of heat shock factors (HSFs) is required to adapt to the acute temperatures, and to regulate the expression of heat shock proteins (HSPs) to function as molecular chaperones to assist in development, protein folding and stability. A heat shock factor 1 (HSF1) gene was identified from a T-DNA insertion mutant that lost the ability to form conidia in liquid culture as well as on solid media. Null mutants lacking CmHSF1 were constructed by gene disruption strategy. Mutants lacking CmHSF1 had reduced in conidial production and displayed decreased tolerance to heat and other abiotic stresses as compared to the wild type parent. Over-expression strains could recover faster from heat and abiotic stresses such as, ethanol, oxidative or osmotic stresses with or without heat shock. In over-expression strains, conidial germination was increased, and parasitic ability on sclerotia of Sclerotinia sclerotiorum was enhanced by 0.42-5.92% compared to the wild type strain. Increased expression levels in wild strain ZS-1 were observed when the fungus was grown at 37°C or 45°C with other abiotic stresses. CmHSF1 plays an important role in conidial production, conidial germination, and tolerance against heat and other abiotic stresses.


Assuntos
Adaptação Biológica/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Esporos Fúngicos , Temperatura , Ascomicetos/crescimento & desenvolvimento , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Fenótipo , Análise de Sequência de DNA , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA