Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 14: 594818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584175

RESUMO

RXFP3 (relaxin-family peptide 3 receptor) is the cognate G-protein-coupled receptor for the neuropeptide, relaxin-3. RXFP3 is expressed widely throughout the brain, including the hypothalamus, where it has been shown to modulate feeding behavior and neuroendocrine activity in rodents. In order to better characterize its potential mechanisms of action, this study determined whether RXFP3 is expressed by dopaminergic neurons within the arcuate nucleus (ARC) and dorsomedial hypothalamus (DMH), in addition to the ventral tegmental area (VTA). Neurons that express RXFP3 were visualized in coronal brain sections from RXFP3-Cre/tdTomato mice, which express the tdTomato fluorophore within RXFP3-positive cells, and dopaminergic neurons in these areas were visualized by simultaneous immunohistochemical detection of tyrosine hydroxylase-immunoreactivity (TH-IR). Approximately 20% of ARC neurons containing TH-IR coexpressed tdTomato fluorescence, suggesting that RXFP3 can influence the dopamine pathway from the ARC to the pituitary gland that controls prolactin release. The ability of prolactin to reduce leptin sensitivity and increase food consumption therefore represents a potential mechanism by which RXFP3 activation influences feeding. A similar proportion of DMH neurons containing TH-IR expressed RXFP3-related tdTomato fluorescence, consistent with a possible RXFP3-mediated regulation of stress and neuroendocrine circuits. In contrast, RXFP3 was barely detected within the VTA. TdTomato signal was absent from the ARC and DMH in sections from Rosa26-tdTomato mice, suggesting that the cells identified in RXFP3-Cre/tdTomato mice expressed authentic RXFP3-related tdTomato fluorescence. Together, these findings identify potential hypothalamic mechanisms through which RXFP3 influences neuroendocrine control of metabolism, and further highlight the therapeutic potential of targeting RXFP3 in feeding-related disorders.

2.
Med Sci Sports Exerc ; 48(11): 2108-2117, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27327024

RESUMO

PURPOSE: This study aimed to examine the effects of reduced CHO but high postexercise fat availability on cell signaling and expression of genes with putative roles in regulation of mitochondrial biogenesis, lipid metabolism, and muscle protein synthesis. METHODS: Ten males completed a twice per day exercise model (3.5 h between sessions) comprising morning high-intensity interval training (8 × 5 min at 85% V˙O2peak) and afternoon steady-state (SS) running (60 min at 70% V˙O2peak). In a repeated-measures design, runners exercised under different isoenergetic dietary conditions consisting of high-CHO (HCHO: 10 g·kg CHO, 2.5 g·kg protein, and 0.8 g·kg fat for the entire trial period) or reduced-CHO but high-fat availability in the postexercise recovery periods (HFAT: 2.5 g·kg CHO, 2.5 g·kg protein, and 3.5 g·kg fat for the entire trial period). RESULTS: Muscle glycogen was lower (P < 0.05) at 3 h (251 vs 301 mmol·kg dry weight) and 15 h (182 vs 312 mmol·kg dry weight) post-SS exercise in HFAT compared with HCHO. Adenosine monophosphate-activated protein kinase α2 activity was not increased post-SS in either condition (P = 0.41), although comparable increases (all P < 0.05) in PGC-1α, p53, citrate synthase, Tfam, peroxisome proliferator-activated receptor, and estrogen-related receptor α mRNA were observed in HCHO and HFAT. By contrast, PDK4 (P = 0.003), CD36 (P = 0.05), and carnitine palmitoyltransferase 1 (P = 0.03) mRNA were greater in HFAT in the recovery period from SS exercise compared with HCHO. Ribosomal protein S6 kinase activity was higher (P = 0.08) at 3 h post-SS exercise in HCHO versus HFAT (72.7 ± 51.9 vs 44.7 ± 27 fmol·min·mg). CONCLUSION: Postexercise high-fat feeding does not augment the mRNA expression of genes associated with regulatory roles in mitochondrial biogenesis, although it does increase lipid gene expression. However, postexercise ribosomal protein S6 kinase 1 activity is reduced under conditions of high-fat feeding, thus potentially impairing skeletal muscle remodeling processes.


Assuntos
Gorduras na Dieta/administração & dosagem , Exercício Físico/fisiologia , Metabolismo dos Lipídeos , Proteínas Musculares/biossíntese , Músculo Esquelético/enzimologia , Biogênese de Organelas , Proteínas Quinases S6 Ribossômicas/metabolismo , Estudos Cross-Over , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Expressão Gênica , Glicogênio/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Proteínas Musculares/genética , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA