RESUMO
Spiro-heterocycles containing natural products and synthetic analogues have a broader biomedicinal application due to their rigid 3D conformation and structural implications. In this context, constructing spiro-isoxazoline systems have continued our interest in natural products and synthetic units to investigate their novel biological activities. Herein, a bromo-lactamization mediated neighboring group participation approach has been utilized on various isoxazole-amides to construct an array of spiro-isoxazoline-lactams. The easy synthesis with diverse functionalization in the periphery of a novel 3D framework could be interesting for biomedical investigation.
RESUMO
Electrophilic fluorine-mediated dearomative spirocyclization has been developed to synthesize a range of fluoro-substituted spiro-isoxazoline ethers and lactones. The in vitro biological assays of synthesized compounds were probed for anti-viral activity against human cytomegalovirus (HCMV) and cytotoxicity against glioblastomas (GBM6) and triple negative breast cancer (MDA MB 231). Interestingly, compounds 4d and 4n showed significant activity against HCMV (IC50 â¼ 10 µM), while 4l and 5f revealed the highest cytotoxicity with IC50 = 36 to 80 µM. The synthetic efficacy and biological relevance offer an opportunity to further drug-discovery development of fluoro-spiro-isoxazolines as novel anti-viral and anti-cancer agents.
RESUMO
The association between glioblastoma (GBM) and human cytomegalovirus (HCMV) infection has been the intensely debated topic over the decades for developing new therapeutic options. In this regard, the peroxides from natural and synthetic sources served as potential antiviral and anticancer agents in the past. Herein, a concise and efficient strategy has been demonstrated to access a novel class of peroxides containing a spiro-isoxazoline to primarily investigate the biological activities. The synthetic compounds were evaluated for in vitro antiviral and antiproliferative activity against HCMV and glioblastoma cell line (GBM6), respectively. While compound 13m showed moderate anti-CMV activity (IC50 = 19 µM), surprisingly, an independent biological assay for compound 13m revealed its antiproliferative activity against the human glioblastoma cell line (GBM6) with an IC50 of 10 µM. Hence, the unification of an isoxazoline and peroxide heterocycles could be a potential direction to initiate the HCMV-GBM drug discovery program.
Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Citomegalovirus/efeitos dos fármacos , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Isoxazóis/química , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peróxidos/química , Peróxidos/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Células Tumorais CultivadasRESUMO
A Lewis acid catalyzed direct transformation of propargyl N-hydroxylamines to α,ß-unsaturated ketones in the presence of aqueous Zn(II)-salts has been described. This investigation also provides a novel observation for the stoichiometric role of Zn-halides over what is known to date for catalytic processes. A thorough mechanistic study has been established based on the experiment using 18O-labeled water in optimized reaction conditions; the incorporation of 18O in the desired product was also substantiated by HRMS. This methodology is also a mild, inexpensive, and an efficient approach for this unusual conversion.
RESUMO
A rapid, sensitive and quantitative immunoassay for the targeted detection and decontamination of E. coli based on Fe3O4 magnetic nanoparticles (MNPs) and plasmonic popcorn-shaped gold nanostructure attached single-walled carbon nanotubes (AuNP@SWCNT) is presented. The MNPs were synthesized as the support for a monoclonal antibody (mAb@MNP). E. coli (49979) was captured and rapidly preconcentrated from the sample with the mAb@MNP, followed by binding with Raman-tagged concanavalin A-AuNP@SWCNTs (Con A-AuNP@SWCNTs) as detector nanoprobes. A Raman tag 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) generated a Raman signal upon 670 nm laser excitation enabling the detection and quantification of E. coli concentration with a limit of detection of 10(2) CFU mL(-1) and a linear logarithmic response range of 1.0 × 10(2) to 1.0 × 10(7) CFU mL(-1). The mAb@MNP could remove more than 98% of E. coli (initial concentration of 1.3 × 10(4) CFU mL(-1)) from water. The potential of the immunoassay to detect E. coli bacteria in real water samples was investigated and the results were compared with the experimental results from the classical count method. There was no statistically significant difference between the two methods (p > 0.05). Furthermore, the MNP/AuNP@SWCNT hybrid system exhibits an enhanced photothermal killing effect. The sandwich-like immunoassay possesses potential for rapid bioanalysis and the simultaneous biosensing of multiple pathogenic agents.
Assuntos
Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Resistência Microbiana a Medicamentos , Magnetismo , Nanopartículas/química , Bactérias/química , Limite de Detecção , Microscopia Eletrônica de Transmissão , Óptica e Fotônica , Temperatura , Fatores de TempoRESUMO
Bacteria such as Salmonella and E. coli present a great challenge in public health care in today's society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay's photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens.
RESUMO
More than a billion people lack access to safe drinking water that is free from pathogenic bacteria and toxic metals. The World Health Organization estimates several million people, mostly children, die every year due to the lack of good quality water. Driven by this need, we report the development of PGLa antimicrobial peptide and glutathione conjugated carbon nanotube (CNT) bridged three-dimensional (3D) porous graphene oxide membrane, which can be used for highly efficient disinfection of Escherichia coli O157:H7 bacteria and removal of As(III), As(V), and Pb(II) from water. Reported results demonstrate that versatile membrane has the capability to capture and completely disinfect pathogenic pathogenic E. coli O157:H7 bacteria from water. Experimentally observed disinfection data indicate that the PGLa attached membrane can dramatically enhance the possibility of destroying pathogenic E. coli bacteria via synergistic mechanism. Reported results show that glutathione attached CNT-bridged 3D graphene oxide membrane can be used to remove As(III), As(V), and Pb(II) from water sample at 10 ppm level. Our data demonstrated that PGLa and glutathione attached membrane has the capability for high efficient removal of E. coli O157:H7 bacteria, As(III), As(V), and Pb(II) simultaneously from Mississippi River water.
Assuntos
Desinfecção/métodos , Escherichia coli O157/isolamento & purificação , Grafite/química , Membranas Artificiais , Metais Pesados/isolamento & purificação , Nanotubos de Carbono/química , Óxidos/química , Purificação da Água/métodos , Peptídeos Catiônicos Antimicrobianos , Glutationa/química , Porosidade , Reação em Cadeia da Polimerase em Tempo Real , Rios/químicaRESUMO
A series of structurally diverse 4-bromo spiro-isoxazolines possessing a variety of aromatic and aliphatic substituents at the 3 position, were synthesized through a 1,3-dipolar cycloaddition followed by intramolecular cyclization of a pendant hydroxyl or carboxylic acid group. The biochemical antiproliferative activity was evaluated in vitro by using two breast cancer cell lines (MCF-7 and MDA-MB-231) and two prostate cancer cell lines (PC-3 and DU-145) using the MTT viability assay, and the IC50 values were obtained. Spiro-isoxazoline derivatives bearing a p-chloro or an o-dichloro aromatic substituent at the 3-position of the isoxazoline showed considerable antitumor activities in all four cell lines with IC50 value ranging from 43µM to 56µM.
RESUMO
We report a strategy to fabricate a rapid and stable surface-enhanced Raman scattering (SERS)-based hybrid nanomaterial using gold nanopopcorns attached single-walled carbon nanotubes (AuNP@f3-SWCNTs) for label-free detection and photothermal killing of bacteria. Herein, previously ester-functionalized single-walled carbon nanotubes (f1-SWCNTs) undergo 1,3-dipolar cycloaddition reaction with in-situ generated nitrile imine under Microwave (MW) irradiation to form a doubly ester terminated SWCNTs cycloadduct (f2-SWCNTs). The ester terminals are further modified with 4-aminothiophenol (4-ATP) under MW-irradiation to form thiol-terminated SWCNTs templates (f3-SWCNTs) that allow gold nanopopcorns (AuNPs) to covalently and uniformly attach at a minimum inter-particle distance thus yielding a hybrid nanomaterial (AuNP@f3-SWCNT) with good aqueous stability and abundant 'hotspots'. Consequently, monoclonal E. coli antibody-conjugated bioassays fabricated with our AuNP@f3-SWCNT substrates (mAb-AuNP@f3-SWCNT) rapidly detect E. coli in water with good selectivity and impressive SERS sensitivity. The detection limit of E. coli 49979, selected as a model to establish proof of principle, was found to be 1.0×102 CFU/mL. Furthermore, the AuNP@f3-SWCNT hybrid nanomaterial offers impressive photothermal pathogen killing effects. The synergy-type enhancement effect arising from the inherent noble properties of the respective components of the hybrid nanomaterial indicate that our AuNP@f3-SWCNT has the potential for further application in multiplex detection in samples.
RESUMO
Cancer is a life-threatening disease, which is rapidly becoming a global pandemic. Driven by this need, here we report for the first time an aptamer-conjugated theranostic magnetic hybrid graphene oxide-based assay for highly sensitive tumor cell detection from blood samples with combined therapy capability. AGE-aptamer-conjugated theranostic magnetic nanoparticle-attached hybrid graphene oxide was developed for highly selective detection of tumor cells from infected blood samples. Experimental data indicate that hybrid graphene can be used as a multicolor luminescence platform for selective imaging of G361 human malignant melanoma cancer cells. The reported results have also shown that indocyanine green (ICG)-bound AGE-aptamer-attached hybrid graphene oxide is capable of combined synergistic photothermal and photodynamic treatment of cancer. Targeted combined therapeutic treatment using 785 nm near-infrared (NIR) light indicates that the multimodal therapeutic treatment is highly effective for malignant melanoma cancer therapy. The reported data show that this aptamer-conjugated theranostic graphene oxide-based assay has exciting potential for improving cancer diagnosis and treatment.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/métodos , Grafite , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Óxidos , Fármacos Fotossensibilizantes/uso terapêutico , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Grafite/química , Humanos , Verde de Indocianina/química , Estrutura Molecular , Óxidos/química , Tamanho da Partícula , Fotoquimioterapia , Propriedades de SuperfícieRESUMO
A model study of the first non-aromatic ring based approach toward α-hydroxyspiroisoxazolines resembling the bromotyrosine derived natural product and analogous spiroisoxazoline core structures were implemented. The desired molecular architecture was achieved through the multifunctionalization of a key 1,3-diketo spiroisoxazoline. Our strategy could serve as an efficient alternative of previously developed approaches that utilize an aromatic ring oxidation as the essential step to synthesize this class of natural products.
RESUMO
An experimental study on the synthesis, tautomerism and acid promoted structural changes of spiro-pyrazolines is described. The target was achieved through a [3+2]-dipolar cycloaddition of an alkene with nitrile imines generated in situ and was isolated in high yield. The synthesized cycloadduct displayed a tendency to exhibit an imine-enamine type of tautomerism as evidenced by X-ray crystal and NMR studies. Furthermore, addition of an acid resulted in the transformation of an imine tautomer to an enamine. The current report constitutes a first formal observation of this kind of tautomerism observed in spiro-indoline pyrazolines.
RESUMO
Mild and environmentally benign Lewis acid promoted 1,3-dipolar cycloaddition reactions of α-hydrazonyl chlorides with alkenes in water are reported. These α-hydrazonyl chlorides, in the presence of Lewis acids, generate nitrile imines in situ which react with dipolarophiles to furnish the corresponding cycloaddition products. In many cases, the required times for the completion of the Lewis acid promoted 1,3-dipolar cycloaddition reactions in water were comparable to the equivalent reactions performed in an organic solvent. Analogous tetrahexylammonium chloride promoted 1,3-dipolar cycloaddition reactions were also performed. The comparison of reaction times and cycloadduct yields for the aforementioned 1,3-dipolar reactions in aqueous and organic media as well as the proposed role of the Lewis acid in the 1,3-dipolar cycloaddition reaction are described.
RESUMO
Regioisomeric spiropyrazolines were synthesized through a tandem intramolecular cyclization/methylation reaction of a functionalized 5,5-disubstituted pyrazoline in one reaction vessel. The 5,5-pyrazolines were constructed through a 1,3-dipolar cycloaddition reaction of aromatic ring containing nitrile imines and a disubstituted geminal alkene. An evaluation of the relative location of the nucleophilic and electrophilic functional groups on the pyrazoline was performed in order to ascertain the best pyrazoline system for the intramolecular cyclization/methylation reaction. Higher spiropyrazoline isolated yields were realized from pyrazolines with the electrophilic ester located further away from the pyrazoline when compared to pyrazolines with a directly bonded ester.
RESUMO
The syntheses of an important class of hitherto unreported novel pyrazoles are described. The regioselective synthesis of 1,3,4,5-tetrasubstituted pyrazoles was achieved by the Huisgen cyclization of nitrile imines with a trisubstituted bromoalkene. The substituted bromoalkene functions as an alkyne synthon which was used to construct 5,5-disubstituted bromopyrazoline intermediates that undergo aromatization to the analogous pyrazoles through the loss of HBr. The cycloaddition regioselectivity was confirmed through single X-ray crystal data of one of the pyrazoles.
RESUMO
Improved yields for the syntheses of a variety of spiroisoxazolines were achieved through intramolecular cyclization/methylation reactions of functionalized 5,5-disubstituted isoxazolines in one reaction vessel. Aromatic ring containing nitrile oxides and disubstituted geminal alkenes reacted in a 1,3-dipolar fashion to afford the corresponding 5,5-isoxazoline. A comparison of the relative location of the nucleophile and electrophile on the isoxazoline and two different ester functional groups was performed in order to determine the best isoxazoline system for the intramolecular cyclization/methylation reaction.
RESUMO
The syntheses of an important class of hitherto unreported 1,3,5-pyrazoles, inspired by an unanticipated eliminatory ring opening are described. The reported pyrazole compounds were constructed through the Huisgen cyclization of 2-methylene-1,3,3-trimethylindoline and an in situ generated nitrile imine. The newly formed spiro-pyrazoline intermediate presumably then undergoes a ring opening/elimination process to afford a pyrazole, as evidenced by single X-ray crystal data. The current report constitutes the first formal observation of this kind of ring opening involving a spiro-pyrazoline intermediate.
RESUMO
The stereoselective synthesis of 4-bromo-spiro-isoxazolines was achieved in one step through the bromination of various isoxazoles that contain a pendant alcohol or carboxylic acid functional group. Isoxazole bromination leads to a bromonium ion intermediate which opens either by neighboring oxygen lone pair electrons or by intramolecular nucleophilic attack. Single X-ray crystal data provides evidence that the two contiguous stereocenters of the spiro-isoxazoline are formed by the anti intramolecular attack of the nucleophile relative to bromine since there is an anti stereochemical relationship between the spirocyclic ring oxygen and the bromine atom.
RESUMO
The regioselective synthesis of 3,5-disubstituted isoxazoles was achieved through the 1,3-dipolar cycloaddition of nitrile oxides with 1,1-disubstituted bromoalkenes. The substituted bromoalkenes function as alkyne synthons which were used to construct 5,5-disubstituted bromoisoxazoline intermediates that aromatize to the analogous isoxazoles through the loss of HBr.