Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Geohealth ; 8(4): e2023GH000982, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560558

RESUMO

Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM2.5). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May). Smoke from prescribed fires is often understudied due to a lack of monitoring in the rural regions where prescribed burning occurs, as well as the short duration and small size of the fires. Our goal was to attribute PM2.5 concentrations to the prescribed burning in the FH. To determine PM2.5 increases from local burning, we used low-cost PM2.5 sensors (PurpleAir) and satellite observations. The FH were also affected by smoke transported from fires in other regions during 2022. We separated the transported smoke from smoke from fires in eastern Kansas. Based on data from the PurpleAir sensors, we found the 24-hr median PM2.5 to increase by 3.0-5.3 µg m-3 (based on different estimates) on days impacted by smoke from fires in the eastern Kansas region compared to days unimpacted by smoke. The FH region was the most impacted by smoke PM2.5 compared to other regions of Kansas, as observed in satellite products and in situ measurements. Additionally, our study found that hourly PM2.5 estimates from a satellite-derived product aligned with our ground-based measurements. Satellite-derived products are useful in rural areas like the FH, where monitors are scarce, providing important PM2.5 estimates.

3.
Nat Commun ; 14(1): 5349, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660164

RESUMO

Ambient fine particulate matter (PM2.5) is the world's leading environmental health risk factor. Quantification is needed of regional contributions to changes in global PM2.5 exposure. Here we interpret satellite-derived PM2.5 estimates over 1998-2019 and find a reversal of previous growth in global PM2.5 air pollution, which is quantitatively attributed to contributions from 13 regions. Global population-weighted (PW) PM2.5 exposure, related to both pollution levels and population size, increased from 1998 (28.3 µg/m3) to a peak in 2011 (38.9 µg/m3) and decreased steadily afterwards (34.7 µg/m3 in 2019). Post-2011 change was related to exposure reduction in China and slowed exposure growth in other regions (especially South Asia, the Middle East and Africa). The post-2011 exposure reduction contributes to stagnation of growth in global PM2.5-attributable mortality and increasing health benefits per µg/m3 marginal reduction in exposure, implying increasing urgency and benefits of PM2.5 mitigation with aging population and cleaner air.


Assuntos
Poluição do Ar , Poluição do Ar/efeitos adversos , Poluição Ambiental , África , Material Particulado/efeitos adversos
4.
Environ Sci Technol ; 57(28): 10263-10275, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37419491

RESUMO

Fine particulate matter (PM2.5) exposure is a leading mortality risk factor in India and the surrounding region of South Asia. This study evaluates the contribution of emission sectors and fuels to PM2.5 mass for 29 states in India and 6 surrounding countries (Pakistan, Bangladesh, Nepal, Bhutan, Sri Lanka, and Myanmar) by combining source-specific emission estimates, stretched grid simulations from a chemical transport model, high resolution hybrid PM2.5, and disease-specific mortality estimates. We find that 1.02 (95% Confidence Interval (CI): 0.78-1.26) million deaths in South Asia attributable to ambient PM2.5 in 2019 were primarily from three leading sectors: residential combustion (28%), industry (15%), and power generation (12%). Solid biofuel is the leading combustible fuel contributing to the PM2.5-attributable mortality (31%), followed by coal (17%), and oil and gas (14%). State-level analyses reveal higher residential combustion contributions (35%-39%) in states (Delhi, Uttar-Pradesh, Haryana) with high ambient PM2.5 (>95 µg/m3). The combined mortality burden associated with residential combustion (ambient) and household air pollution (HAP) in India is 0.72 million (95% CI:0.54-0.89) (68% attributable to HAP, 32% attributable to residential combustion). Our results illustrate the potential to reduce PM2.5 mass and improve population health by reducing emissions from traditional energy sources across multiple sectors in South Asia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Modelos Químicos , Índia/epidemiologia
5.
Environ Res ; 227: 115734, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963710

RESUMO

Low haemoglobin (Hb) concentrations and anaemia in children have adverse effects on development and functioning, some of which may have consequences in later life. Exposure to ambient air pollution is reported to be associated with anaemia, but there is little evidence specific to low- and middle-income countries (LMICs), where childhood anaemia prevalence is greatest. We aimed to determine if long-term ambient fine particulate matter (≤2.5 µm in aerodynamic diameter [PM2.5]) exposure was associated with Hb levels and the prevalence of anaemia in children aged <5 years living in 36 LMICs. We used Demographic and Health Survey data, collected between 2010 and 2019, which included blood Hb measurements. Satellite-derived estimates of annual average PM2.5 was the main exposure variable, which was linked to children's area of residence. Anaemia was defined according to standard World Health Organization guidelines (Hb < 11 g/dL). The association of PM2.5 with Hb levels and anaemia prevalence was examined using multivariable linear and logistic regression models, respectively. We examined whether the effects of ambient PM2.5 were modified by a child's sex and age, household wealth index, and urban/rural place of residence. Models were adjusted for relevant covariates, including other outdoor pollutants and household cooking fuel. The study included 154,443 children, of which 89,904 (58.2%) were anaemic. The country-level prevalence of anaemia ranged from 15.8% to 87.9%. Mean PM2.5 exposure was 33.0 (±21.6) µg/m3. The adjusted model showed that a 10 µg/m3 increase in annual PM2.5 concentration was associated with greater odds of anaemia (OR = 1.098 95% CI: 1.087, 1.109). The same increase in PM2.5 was associated with a decrease in average Hb levels of 0.075 g/dL (95% CI: 0.081, 0.068). There was evidence of effect modification by household wealth index and place of residence, with greater adverse effects in children from lower wealth quintiles and children in rural areas. Exposure to annual PM2.5 was cross-sectionally associated with decreased blood Hb levels, and greater risk of anaemia, in children aged <5 years living in 36 LMICs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Anemia , Humanos , Criança , Material Particulado/análise , Poluentes Atmosféricos/análise , Estudos Transversais , Exposição Ambiental/análise , Poluição do Ar/análise , Anemia/induzido quimicamente , Anemia/epidemiologia , Hemoglobinas
6.
Environ Pollut ; 317: 120718, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435281

RESUMO

Studies examining long-term effects of ambient air pollution exposure, measured as annual averages, on pulmonary tuberculosis (TB) incidence are scarce, particularly in endemic, rural settings. We performed a small-area study in Ningxia Hui Autonomous Region (NHAR), a high TB-burden area in rural China, using township-level (n = 358 non-overlapping townships) annual TB notification data (2005-2017). We aimed to determine if annual average concentrations of ambient air pollution (particulate matter <2·5 µm [PM2·5], nitrogen dioxide [NO2] ozone [O3]) were associated with TB notification rates (as a proxy for incidence). Air pollution effects on TB notification rates at township-level were estimated as incidence rate ratios (IRR), fitted using a generalised estimating equation (GEE) adjusted for covariates (age, sex, occupation, education, ethnicity, remoteness [urban or rural], household crowding and solid fuel use). A total of 38,942 TB notifications were reported in NHAR between 2005 and 2017. The mean annual TB notification rate was 67 (standard deviation [SD]; 7) per 100,000 people. Median concentrations of PM2·5, NO2, and O3 were 42 µg/m3 (interquartile range [IQR]; 38-48 µg/m3), 15 ppb (IQR; 12-16 ppb), and 56 ppb (IQR; 56-57 ppb), respectively. In single pollutant models, adjusted for covariates, an interquartile range (IQR) increase (10 µg/m3) in PM2·5 was significantly associated with higher TB notification rates (IRR: 1∙35; 95% CI: 1·25-1·48). Comparable effects on notifications of TB were observed for increases in NO2 exposure (IRR: 1·20 per IQR (4 ppb) increase; 95% CI: 1·08-1·31). Ground-level ozone was not associated with TB notification rate in any models. The observed effects were consistent over time, in multi-pollutant models, and appeared robust to additional adjustment for indicators of household crowding, solid fuel use and remoteness. More rigorous study designs are needed to understand if improving air quality has population-level benefits on TB disease incidence in endemic settings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Ozônio , Tuberculose Pulmonar , Humanos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Aglomeração , Exposição Ambiental/análise , Características da Família , Poluição do Ar/análise , Material Particulado/análise , Ozônio/análise , China/epidemiologia , Tuberculose Pulmonar/epidemiologia
7.
Environ Pollut ; 318: 120916, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563987

RESUMO

Exposure to ambient air pollution may affect cognitive functioning and development in children. Unfortunately, there is little evidence available for low- and middle-income countries (LMICs), where air pollution levels are highest. We analysed the association between exposure to ambient fine particulate matter (≤2.5 µm [PM2.5]) and cognitive development indicators in a cross-sectional analysis of children (aged 3-4 years) in 12 LMICs. We linked Demographic and Health Survey data, conducted between 2011 and 2018, with global estimates of PM2.5 mass concentrations to examine annual average exposure to PM2.5 and cognitive development (literacy-numeracy and learning domains) in children. Cognitive development was assessed using the United Nations Children's Fund's early child development indicators administered to each child's mother. We used multivariable logistic regression models, adjusted for individual- and area-level covariates, and multi-pollutant models (including nitrogen dioxide and surface-level ozone). We assessed if sex and urban/rural status modified the association of PM2.5 with the outcome. We included 57,647 children, of whom, 9613 (13.3%) had indicators of cognitive delay. In the adjusted model, a 5 µg/m3 increase in annual all composition PM2.5 was associated with greater odds of cognitive delay (OR = 1.17; 95% CI: 1.13, 1.22). A 5 µg/m3 increase in anthropogenic PM2.5 was also associated with greater odds of cognitive delay (OR = 1.05; 95% CI: 1.00, 1.10). These results were robust to several sensitivity analyses, including multi-pollutant models. Interaction terms showed that urban-dwelling children had greater odds of cognitive delay than rural-dwelling children, while there was no significant difference by sex. Our findings suggest that annual average exposure to PM2.5 in young children was associated with adverse effects on cognitive development, which may have long-term consequences for educational attainment and health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Feminino , Humanos , Criança , Pré-Escolar , Poluentes Atmosféricos/análise , Estudos Transversais , Países em Desenvolvimento , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise , Cognição
8.
Geohealth ; 6(12): e2022GH000672, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36467256

RESUMO

We investigate socioeconomic disparities in air quality at public schools in the contiguous US using high resolution estimates of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations. We find that schools with higher proportions of people of color (POC) and students eligible for the federal free or reduced lunch program, a proxy for poverty level, are associated with higher pollutant concentrations. For example, we find that the median annual NO2 concentration for White students, nationally, was 7.7 ppbv, compared to 9.2 ppbv for Black and African American students. Statewide and regional disparities in pollutant concentrations across racial, ethnic, and poverty groups are consistent with nationwide results, where elevated NO2 concentrations were associated with schools with higher proportions of POC and higher levels of poverty. Similar, though smaller, differences were found in PM2.5 across racial and ethnic groups in most states. Racial, ethnic, and economic segregation across the rural-urban divide is likely an important factor in pollution disparities at US public schools. We identify distinct regional patterns of disparities, highlighting differences between California, New York, and Florida. Finally, we highlight that disparities exist not only across urban and non-urban lines but also within urban environments.

9.
Nature ; 601(7893): 380-387, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046607

RESUMO

Nitrogen dioxide (NO2) is an important contributor to air pollution and can adversely affect human health1-9. A decrease in NO2 concentrations has been reported as a result of lockdown measures to reduce the spread of COVID-1910-20. Questions remain, however, regarding the relationship of satellite-derived atmospheric column NO2 data with health-relevant ambient ground-level concentrations, and the representativeness of limited ground-based monitoring data for global assessment. Here we derive spatially resolved, global ground-level NO2 concentrations from NO2 column densities observed by the TROPOMI satellite instrument at sufficiently fine resolution (approximately one kilometre) to allow assessment of individual cities during COVID-19 lockdowns in 2020 compared to 2019. We apply these estimates to quantify NO2 changes in more than 200 cities, including 65 cities without available ground monitoring, largely in lower-income regions. Mean country-level population-weighted NO2 concentrations are 29% ± 3% lower in countries with strict lockdown conditions than in those without. Relative to long-term trends, NO2 decreases during COVID-19 lockdowns exceed recent Ozone Monitoring Instrument (OMI)-derived year-to-year decreases from emission controls, comparable to 15 ± 4 years of reductions globally. Our case studies indicate that the sensitivity of NO2 to lockdowns varies by country and emissions sector, demonstrating the critical need for spatially resolved observational information provided by these satellite-derived surface concentration estimates.


Assuntos
Atmosfera/química , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/estatística & dados numéricos , Indicadores Ambientais , Dióxido de Nitrogênio/análise , Altitude , Humanos , Ozônio/análise , Quarentena/estatística & dados numéricos , Imagens de Satélites , Fatores de Tempo
10.
Lancet Planet Health ; 6(2): e139-e146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998505

RESUMO

BACKGROUND: With much of the world's population residing in urban areas, an understanding of air pollution exposures at the city level can inform mitigation approaches. Previous studies of global urban air pollution have not considered trends in air pollutant concentrations nor corresponding attributable mortality burdens. We aimed to estimate trends in fine particulate matter (PM2·5) concentrations and associated mortality for cities globally. METHODS: We use high-resolution annual average PM2·5 concentrations, epidemiologically derived concentration response functions, and country-level baseline disease rates to estimate population-weighted PM2·5 concentrations and attributable cause-specific mortality in 13 160 urban centres between the years 2000 and 2019. FINDINGS: Although regional averages of urban PM2·5 concentrations decreased between the years 2000 and 2019, we found considerable heterogeneity in trends of PM2·5 concentrations between urban areas. Approximately 86% (2·5 billion inhabitants) of urban inhabitants lived in urban areas that exceeded WHO's 2005 guideline annual average PM2·5 (10 µg/m3), resulting in an excess of 1·8 million (95% CI 1·34 million-2·3 million) deaths in 2019. Regional averages of PM2·5-attributable deaths increased in all regions except for Europe and the Americas, driven by changes in population numbers, age structures, and disease rates. In some cities, PM2·5-attributable mortality increased despite decreases in PM2·5 concentrations, resulting from shifting age distributions and rates of non-communicable disease. INTERPRETATION: Our study showed that, between the years 2000 and 2019, most of the world's urban population lived in areas with unhealthy levels of PM2·5, leading to substantial contributions to non-communicable disease burdens. Our results highlight that avoiding the large public health burden from urban PM2·5 will require strategies that reduce exposure through emissions mitigation, as well as strategies that reduce vulnerability to PM2·5 by improving overall public health. FUNDING: NASA, Wellcome Trust.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , População Urbana
11.
Sci Total Environ ; 803: 150011, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525772

RESUMO

Emission regulations of the power and industry sectors have been identified as the major driver of PM2.5 mitigation over China during 2013-2017. In this study, we use ground-based observations of four air pollutants (CO, NO2, SO2, and PM2.5) to show that additional stringent emission policies on the industrial, transportation, and residential sectors during the new 3-year protection plan (2018-2020) have accelerated the improvement of China's air quality. Based on regional (North and South China) trends of annual mean measurements, significant reductions are observed for all four pollutants during 2017-2020. These decreasing trends are found to be >30% stronger than 2015-2017 for NO2, CO, and PM2.5. For CO and PM2.5, the acceleration is the strongest in winter and North China, when and where the residential clean-heating actions were implemented. While for NO2, the accelerations are pronounced regardless of region or season, reflecting nationwide measures to reduce NOx emissions from industrial and transportation activities. SO2 concentration reductions that were already substantial before 2017 are maintained but not accelerated, consistent with the dominance of end-of-pipe measures rather than a structural change of energy fuels. Our investigation highlights the value of multi-pollutant analysis to relate emission policies with air quality changes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Material Particulado/análise
12.
Environ Int ; 159: 107019, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34875446

RESUMO

BACKGROUND: Evidence from developed countries suggests that fine particulate matter (≤2.5 µm [PM2.5]) contributes to childhood respiratory morbidity and mortality. However, few analyses have focused on resource-limited settings, where much of this burden occurs. We aimed to investigate the cross-sectional associations between annual average exposure to ambient PM2.5 and acute respiratory infection (ARI) in children aged <5 years living in low- and middle-income countries (LMICs). METHODS: We combined Demographic and Health Survey (DHS) data from 35 countries with gridded global estimates of annual PM2.5 mass concentrations. We analysed the association between PM2.5 and maternal-reported ARI in the two weeks preceding the survey among children aged <5 years living in 35 LMICs. We used multivariable logistic regression models that adjusted for child, maternal, household and cluster-level factors. We also fitted multi-pollutant models (adjusted for nitrogen dioxide [NO2] and surface-level ozone [O3]), among other sensitivity analyses. We assessed whether the associations between PM2.5 and ARI were modified by sex, age and place of residence. RESULTS: The analysis comprised 573,950 children, among whom the prevalence of ARI was 22,506 (3.92%). The mean (±SD) estimated annual concentration of PM2.5 to which children were exposed was 48.2 (±31.0) µg/m3. The 5th and 95th percentiles of PM2.5 were 9.8 µg/m3 and 110.9 µg/m3, respectively. A 10 µg/m3 increase in PM2.5 was associated with greater odds of having an ARI (OR: 1.06; 95% CI: 1.05-1.07). The association between PM2.5 and ARI was robust to adjustment for NO2 and O3. We observed evidence of effect modification by sex, age and place of residence, suggesting greater effects of PM2.5 on ARI in boys, in younger children, and in children living in rural areas. CONCLUSIONS: Annual average ambient PM2.5, as an indicator for long-term exposure, was associated with greater odds of maternal-reported ARI in children aged <5 years living in 35 LMICs. Longitudinal studies in LMICs are required to corroborate our cross-sectional findings, to further elucidate the extent to which lowering PM2.5 may have a role in the global challenge of reducing ARI-related morbidity and mortality in children.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Pré-Escolar , Estudos Transversais , Países em Desenvolvimento , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Masculino , Material Particulado/efeitos adversos , Material Particulado/análise
13.
Environ Int ; 160: 107053, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942408

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) exposure has been reported to adversely affect birth outcomes, but the evidence is limited, particularly in low- and middle-income countries (LMICs). We assessed the associations between maternal PM2.5 exposure and low birth weight (LBW) and preterm birth (PTB) in Africa. METHODS: We used standard Demographic and Health Surveys (DHS) data (2005-2015) from 15 countries in Africa to conduct a cross-sectional study. The study population was composed of 131,594 births with detailed information on maternal and household variables. LBW was defined as a birth weight of < 2500 g after 37 weeks, and PTB was defined as live birth occurring before 37 weeks of gestation. Average exposure to PM2.5 during pregnancy was estimated using satellite-based models. Multivariable logistic regression models were constructed, and analyses of data by region (Western, Eastern, Central, and Southern Africa) and data stratified by potential effect modifiers were conducted. RESULTS: A total of 13,214 (10%) LBW and 4,377 (3.3%) PTB cases were identified. An interquartile range (IQR) (33.9 µg/m3) increase in PM2.5 during pregnancy was associated with increased odds of LBW and PTB, with odds ratios (ORs) of 1.28 (95% CI: 1.23, 1.34) and 1.08 (95% CI: 1.01, 1.16), respectively. Region-specific analyses revealed significant associations between PM2.5 and LBW in all regions, and significant associations between PM2.5 and PTB in Western and Southern Africa. Subgroup analyses revealed that the association between PM2.5 and LBW was present in all subgroups, and stronger associations were observed in female infants, while the association between PM2.5 and PTB was larger in subgroups of older individuals living in urban areas. CONCLUSION: This multicountry study in Africa demonstrated significant associations between maternal exposure to PM2.5 and higher odds of LBW and PTB. Our findings may facilitate air quality control strategies that address adverse birth outcomes in LMICs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Nascimento Prematuro , África , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Peso ao Nascer , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido de Baixo Peso , Recém-Nascido , Exposição Materna/estatística & dados numéricos , Material Particulado/análise , Material Particulado/toxicidade , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia
14.
Environ Sci Technol ; 55(22): 15287-15300, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34724610

RESUMO

Annual global satellite-based estimates of fine particulate matter (PM2.5) are widely relied upon for air-quality assessment. Here, we develop and apply a methodology for monthly estimates and uncertainties during the period 1998-2019, which combines satellite retrievals of aerosol optical depth, chemical transport modeling, and ground-based measurements to allow for the characterization of seasonal and episodic exposure, as well as aid air-quality management. Many densely populated regions have their highest PM2.5 concentrations in winter, exceeding summertime concentrations by factors of 1.5-3.0 over Eastern Europe, Western Europe, South Asia, and East Asia. In South Asia, in January, regional population-weighted monthly mean PM2.5 concentrations exceed 90 µg/m3, with local concentrations of approximately 200 µg/m3 for parts of the Indo-Gangetic Plain. In East Asia, monthly mean PM2.5 concentrations have decreased over the period 2010-2019 by 1.6-2.6 µg/m3/year, with decreases beginning 2-3 years earlier in summer than in winter. We find evidence that global-monitored locations tend to be in cleaner regions than global mean PM2.5 exposure, with large measurement gaps in the Global South. Uncertainty estimates exhibit regional consistency with observed differences between ground-based and satellite-derived PM2.5. The evaluation of uncertainty for agglomerated values indicates that hybrid PM2.5 estimates provide precise regional-scale representation, with residual uncertainty inversely proportional to the sample size.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise , Incerteza
15.
Environ Int ; 156: 106739, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34217038

RESUMO

BACKGROUND: Few studies have investigated the association between exposure to fine particulate matter (PM2.5) and infant mortality in developing countries, especially for the health effects of specific PM2.5 constituents. OBJECTIVE: We aimed to examine the association of long-term exposure to specific PM2.5 constituents with infant mortality in 15 African countries from 2005 to 2015. METHODS: Based on the Demographic and Health Surveys (DHS) dataset, we included birth history records from 15 countries in Africa and conducted a multicountry cross-sectional study to examine the associations between specific PM2.5 constituents and infant mortality. We estimated annual residential exposure using satellite-derived PM2.5 for mass and a chemical transport model (GEOS-Chem) for its six constituents, including organic matter (OM), black carbon (BC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and soil dust (DUST). Multivariable logistic regression analysis was employed by fitting single-constituent models, the constituent-PM2.5 models, and the constituent-residual models. We also conducted stratified analyses by potential effect modifiers and examined the specific associations for each country. RESULTS: We found positive and significant associations between PM2.5 total mass and most of its constituents with infant mortality. In the single-constituent model, for an IQR increase in pollutant concentrations, the odds ratio (OR) of infant mortality was 1.03 (95 %CI; 1.01, 1.06) for PM2.5 total mass, and was 1.04 (95 %CI: 1.02, 1.06), 1.04 (95 %CI: 1.02, 1.05), 1.02 (95 %CI: 1.00, 1.03), 1.04 (1.01, 1.06) for BC, OM, SO42-, and DUST, respectively. The associations of BC, OM, and SO42- remained significant in the other two models. We observed larger estimates in subgroups with older maternal age, living in urban areas, using unclean cooking energy, and with access to piped water. The associations varied among countries, and by different constituents. CONCLUSIONS: The carbonaceous fractions and sulfate play a major important role among PM2.5 constituents on infant mortality. Our findings have certain policy implications for implementing effective measures for targeted reduction in specific sources (fossil fuel combustion and biomass burning) of PM2.5 constituents against the risk of infant mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , África/epidemiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Estudos Transversais , Humanos , Lactente , Mortalidade Infantil , Material Particulado/análise
16.
Nat Commun ; 12(1): 3594, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127654

RESUMO

Ambient fine particulate matter (PM2.5) is the world's leading environmental health risk factor. Reducing the PM2.5 disease burden requires specific strategies that target dominant sources across multiple spatial scales. We provide a contemporary and comprehensive evaluation of sector- and fuel-specific contributions to this disease burden across 21 regions, 204 countries, and 200 sub-national areas by integrating 24 global atmospheric chemistry-transport model sensitivity simulations, high-resolution satellite-derived PM2.5 exposure estimates, and disease-specific concentration response relationships. Globally, 1.05 (95% Confidence Interval: 0.74-1.36) million deaths were avoidable in 2017 by eliminating fossil-fuel combustion (27.3% of the total PM2.5 burden), with coal contributing to over half. Other dominant global sources included residential (0.74 [0.52-0.95] million deaths; 19.2%), industrial (0.45 [0.32-0.58] million deaths; 11.7%), and energy (0.39 [0.28-0.51] million deaths; 10.2%) sectors. Our results show that regions with large anthropogenic contributions generally had the highest attributable deaths, suggesting substantial health benefits from replacing traditional energy sources.


Assuntos
Poluentes Atmosféricos/análise , Combustíveis Fósseis , Material Particulado/análise , Poluição do Ar , Doença , Exposição Ambiental , Humanos , Indústrias , Mortalidade , Fatores de Risco
17.
Sci Adv ; 7(26)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34162552

RESUMO

Lockdowns during the COVID-19 pandemic provide an unprecedented opportunity to examine the effects of human activity on air quality. The effects on fine particulate matter (PM2.5) are of particular interest, as PM2.5 is the leading environmental risk factor for mortality globally. We map global PM2.5 concentrations for January to April 2020 with a focus on China, Europe, and North America using a combination of satellite data, simulation, and ground-based observations. We examine PM2.5 concentrations during lockdown periods in 2020 compared to the same periods in 2018 to 2019. We find changes in population-weighted mean PM2.5 concentrations during the lockdowns of -11 to -15 µg/m3 across China, +1 to -2 µg/m3 across Europe, and 0 to -2 µg/m3 across North America. We explain these changes through a combination of meteorology and emission reductions, mostly due to transportation. This work demonstrates regional differences in the sensitivity of PM2.5 to emission sources.

18.
Environ Sci Technol ; 54(13): 7879-7890, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32491847

RESUMO

Exposure to outdoor fine particulate matter (PM2.5) is a leading risk factor for mortality. We develop global estimates of annual PM2.5 concentrations and trends for 1998-2018 using advances in satellite observations, chemical transport modeling, and ground-based monitoring. Aerosol optical depths (AODs) from advanced satellite products including finer resolution, increased global coverage, and improved long-term stability are combined and related to surface PM2.5 concentrations using geophysical relationships between surface PM2.5 and AOD simulated by the GEOS-Chem chemical transport model with updated algorithms. The resultant annual mean geophysical PM2.5 estimates are highly consistent with globally distributed ground monitors (R2 = 0.81; slope = 0.90). Geographically weighted regression is applied to the geophysical PM2.5 estimates to predict and account for the residual bias with PM2.5 monitors, yielding even higher cross validated agreement (R2 = 0.90-0.92; slope = 0.90-0.97) with ground monitors and improved agreement compared to all earlier global estimates. The consistent long-term satellite AOD and simulation enable trend assessment over a 21 year period, identifying significant trends for eastern North America (-0.28 ± 0.03 µg/m3/yr), Europe (-0.15 ± 0.03 µg/m3/yr), India (1.13 ± 0.15 µg/m3/yr), and globally (0.04 ± 0.02 µg/m3/yr). The positive trend (2.44 ± 0.44 µg/m3/yr) for India over 2005-2013 and the negative trend (-3.37 ± 0.38 µg/m3/yr) for China over 2011-2018 are remarkable, with implications for the health of billions of people.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Europa (Continente) , Humanos , Índia , Material Particulado/análise
19.
Environ Sci Technol ; 51(19): 11185-11195, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28891283

RESUMO

We interpret in situ and satellite observations with a chemical transport model (GEOS-Chem, downscaled to 0.1° × 0.1°) to understand global trends in population-weighted mean chemical composition of fine particulate matter (PM2.5). Trends in observed and simulated population-weighted mean PM2.5 composition over 1989-2013 are highly consistent for PM2.5 (-2.4 vs -2.4%/yr), secondary inorganic aerosols (-4.3 vs -4.1%/yr), organic aerosols (OA, -3.6 vs -3.0%/yr) and black carbon (-4.3 vs -3.9%/yr) over North America, as well as for sulfate (-4.7 vs -5.8%/yr) over Europe. Simulated trends over 1998-2013 also have overlapping 95% confidence intervals with satellite-derived trends in population-weighted mean PM2.5 for 20 of 21 global regions. Over 1989-2013, most (79%) of the simulated increase in global population-weighted mean PM2.5 of 0.28 µg m-3yr-1 is explained by significantly (p < 0.05) increasing OA (0.10 µg m-3yr-1), nitrate (0.05 µg m-3yr-1), sulfate (0.04 µg m-3yr-1), and ammonium (0.03 µg m-3yr-1). These four components predominantly drive trends in population-weighted mean PM2.5 over populous regions of South Asia (0.94 µg m-3yr-1), East Asia (0.66 µg m-3yr-1), Western Europe (-0.47 µg m-3yr-1), and North America (-0.32 µg m-3yr-1). Trends in area-weighted mean and population-weighted mean PM2.5 composition differ significantly.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Ásia , Europa (Continente) , Ásia Oriental , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA