Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 165: 156172, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924609

RESUMO

The COVID-19 pandemic has caused millions of deaths and has resulted in disastrous societal and economic impacts worldwide. During SARS-CoV-2 infection, abnormal levels of pro-inflammatory cytokines have been observed and were associated to the severity of the disease. Type I (-α/ß) and Type III (IFN-λ) interferons are family members of cytokines that play an important role in fighting viral replication during the early phases of infection. The location and timing of the IFNs production have been shown to be decisive for the COVID-19 outcome. Despite the effectiveness of COVID-19 vaccines and with the emergence of new SARS-CoV-2 variants, a better understanding of the involvement of IFNs as players in antiviral immunity in the COVID-19 pathophysiology is necessary to implement additional potent prophylactic and/or therapeutic approaches. In this study, we investigated the role of type I and III IFN in COVID-19 pathophysiology. We first analyzed the IFN-α, IFN-ß and IFN- λ mRNA expression in nasopharyngeal swabs and blood samples from Moroccan patients infected with SARS-CoV-2 and secondly correlated these IFNs expressions with COVID-19 clinical and biological parameters. Our results showed that in the upper airways of patients with mild, non-severe, or severe COVID-19 manifestations, the IFN- α, - ß and - λ are expressed in the same manner as in controls. However, in blood samples their expression was downregulated in all groups. Univariate linear models with interferons as predictors to evaluate clinical-biological parameters highlighted that the main clinical-biological relations were found when testing: FiO2, Lymphocyte values and virus load. Furthermore, the multivariate models confirmed that quantifications of interferons during COVID-19 are good biological markers for tracking COVID-19 pathophysiology.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Interferons , Vacinas contra COVID-19 , Pandemias , SARS-CoV-2 , Antivirais , Citocinas , Interferon-alfa , Interferon lambda
2.
Exp Parasitol ; 245: 108452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581148

RESUMO

Cutaneous leishmaniasis is an infectious disease, considered as a major public health problem in different regions of the world. The current treatments are limited due to their toxicity and treatment failures, which have increased the search for new substances of natural origin to control this infection. Capparis spinosa is an important medicinal plant, rich in biochemical compounds with a broad range of activities including antimicrobial effects. Nevertheless, more investigations are still needed to determine its effect on Leishmania parasites. This study aimed to evaluate the effect of C. spinosa' extracts on Leishmania major promastigotes and amastigotes growth as well as on L-arginine metabolic pathways, especially the production of leishmanicidal molecules such as nitric oxide. Our results showed that C. spinosa' methanolic and aqueous extracts contained polyphenols and flavonoids at different concentrations. The methanolic extract of C. spinosa, compared to the aqueous extract, showed significantly higher amounts of total polyphenols (21.23 ± 1.08) mg GAE/g of dw (P < 0.05), as well as a higher antioxidant activity evaluated respectively by Reducing Power and DPPH (EC50: 0.31 ± 0.02 and 7.69 ± 1.28) mg/ml. Both extracts significantly inhibited L. major promastigotes and intra-macrophagic amastigotes growth in vitro in a dose-dependent manner (P < 0.001) and induced NO production not only in Leishmania-infected macrophages but also in uninfected macrophages, without showing any cytotoxicity in vitro. Furthermore, in silico docking studies showed that C. spinosa compounds identified by RP-HPLC exhibited inhibitory activity against the arginase enzyme. The leishmanicidal effect of C. spinosa may be due to its phenolic content and its mechanism of action may be mediated by an increase in NO production and by the inhibition of arginase enzyme in silico. These findings support the hypothesis that C. spinosa might be a valuable source of new biomolecules for leishmaniasis treatment.


Assuntos
Capparis , Leishmania major , Óxido Nítrico/metabolismo , Arginase/metabolismo , Capparis/química , Capparis/metabolismo , Flavonoides/farmacologia , Polifenóis/farmacologia , Extratos Vegetais/farmacologia , Metanol/farmacologia
3.
Mar Pollut Bull ; 185(Pt B): 114349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410198

RESUMO

The distribution of the two potentially toxic dinoflagellates Gymnodinium catenatum and Alexandrium spp. was investigated in the Mediterranean Moroccan Sea from March 2018 to March 2019. The cockle Acanthocardia tuberculata and the smooth clam Callista chione were collected at four stations, and their toxin levels were assessed using the mouse bioassay. The toxin profile was analysed by LC-MS/MS in G. catenatum and in the bivalves harvested in M'diq and Djawn. The species G. catenatum was present throughout the year, whereas Alexandrium spp. was less abundant. The paralytic shellfish toxin (PST) level in cockles was, on average, six times above the sanitary threshold; GTX5 was the major contributor to the total PST level, followed by dc-STX and STX. The toxin level of the smooth clam was considerably lower than that of the cockle; GTX5 and C-toxins were the dominating analogues. Our results suggest the responsibility of G. catenatum for the recurrent PST contamination in the Moroccan Mediterranean Sea, with a west-east gradient.


Assuntos
Cardiidae , Dinoflagellida , Toxinas Biológicas , Animais , Camundongos , Cromatografia Líquida , Marrocos , Espectrometria de Massas em Tandem , Moluscos
4.
Toxicon ; 219: 106916, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115413

RESUMO

Mediterranean waters have undergone environmental changes during the last decades leading to various modifications of the structure of phytoplankton populations, especially Harmful Algal Blooms (HABs) species. Monitoring of the potentially toxic phytoplankton species was carried out biweekly in the western Mediterranean coast of Morocco from March 2018 to March 2019. Lipophilic Shellfish Toxins (LSTs) using LC-MS/MS and Domoic Acid (DA) using HPLC-UV were measured in the exploited mollusks, the cockle Acanthocardia tuberculata and the smooth clam Callista chione. We also determined the prevailing environmental factors in four surveyed sites (M'diq bay, Martil, Kaa Asras, and Djawn) selected to cover a variety of coastal ecosystems. Results showed that Pseudo-nitzschia spp. a DA producer species, was abundant with a pick of 50 × 103 cells l-1 on October 2018 in Djawn. Dinophysis caudata was the dominate Dinophysis species and showed a maximum density of 2200 cells l-1 on July in Djawn. Prorocentrum lima, an epibenthic dinoflagellate, appeared rarely in the water column with densities <80 cells l-1. Gonyaulax spinifera and Protoceratium reticulatum were found occasionally with a maximum density of 160 cells l-1. Karenia selliformis was detected only five times (<80 cells l-1) throughout the survey period. LC-MS/MS analyses revealed the presence of OA/DTX3, PTX-2, PTX-2 sa, and PTX-2 sa epi in the cockle at concentrations of up to 44.81 (OA/DTX-3+PTXs) ng g-1 meat. GYM-A was detected in the clam at concentrations of up to 4.22 ng g-1 meat. For the first time, AZAs and YTXs were detected in the southwestern Mediterranean with maximum values of 2.49 and 10.93 ng g-1 meat of cockle, respectively. DA was detected in moderate concentrations not exceeding 5.65 µg g-1 in both mollusks. Results showed that the observed toxic algae in the water column were responsible from the analysed toxins in the mollusks. It is likely that the southwestern Mediterranean waters could see the development of emergent species producing potent toxins (YTXs, AZAs, GYM-A). These dinoflagellates have to be isolated, ribotyped, and their toxin profiles determined.


Assuntos
Bivalves , Cardiidae , Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Toxinas Marinhas/análise , Cromatografia Líquida , Frutos do Mar/análise , Proliferação Nociva de Algas , Ecossistema , Espectrometria de Massas em Tandem , Bivalves/química , Dinoflagellida/química , Fitoplâncton/química , Água
5.
Mol Cell ; 82(15): 2815-2831.e5, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35752171

RESUMO

Protein import into mitochondria is a highly regulated process, yet how cells clear mitochondria undergoing dysfunctional protein import remains poorly characterized. Here we showed that mitochondrial protein import stress (MPIS) triggers localized LC3 lipidation. This arm of the mitophagy pathway occurs through the Nod-like receptor (NLR) protein NLRX1 while, surprisingly, without the engagement of the canonical mitophagy protein PINK1. Mitochondrial depolarization, which itself induces MPIS, also required NLRX1 for LC3 lipidation. While normally targeted to the mitochondrial matrix, cytosol-retained NLRX1 recruited RRBP1, a ribosome-binding transmembrane protein of the endoplasmic reticulum, which relocated to the mitochondrial vicinity during MPIS, and the NLRX1/RRBP1 complex in turn controlled the recruitment and lipidation of LC3. Furthermore, NLRX1 controlled skeletal muscle mitophagy in vivo and regulated endurance capacity during exercise. Thus, localization and lipidation of LC3 at the site of mitophagosome formation is a regulated step of mitophagy controlled by NLRX1/RRBP1 in response to MPIS.


Assuntos
Proteínas Mitocondriais , Mitofagia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico
6.
Microb Pathog ; 153: 104799, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33609650

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has emerged in China in December 2019 and rapidly spread to more than 196 countries worldwide. The physiopathology of human SARS-CoV-2 has not been completely understood, but its pathogenesis has been linked to a disproportionate response of the immune system. Just as described for SARS and MERS, an uncontrolled systemic inflammatory response, known as cytokine release syndrome (CRS) was observed in severe COVID-19 patients. It results from the release by immune and non-immune effector cells of substantial amounts of pro-inflammatory cytokines and appears to contribute to SARS-CoV-2 pulmonary inflammation and extensive lung damage. In addition, hyper-coagulation and thrombosis resulted from the important release of pro-inflammatory cytokines contribute to the lethality of subjects severely infected with SARS-CoV-2. It is therefore essential to have a deep understanding of the various cytokines involved in this exacerbated immune response, and that could be targeted by potential immunological treatments. The aim of this review was to gather the current knowledge about the role of pro-inflammatory cytokines, namely IL-1ß, IL-6, IL-8, IL-17 and TNFα in SARS-CoV-2 CRS, the probable causes and clinical outcomes of this phenomenon in severe cases of COVID-19.


Assuntos
COVID-19/patologia , Síndrome da Liberação de Citocina/patologia , Citocinas/sangue , SARS-CoV-2/imunologia , Citocinas/imunologia , Humanos , Ativação de Macrófagos/imunologia , Trombose/patologia
7.
Med Trop Sante Int ; 1(4)2021 12 31.
Artigo em Francês | MEDLINE | ID: mdl-35891918

RESUMO

Background: Post-kala-azar dermal Leishmaniasis (PKDL) is a rare skin syndrome observed after treatment of visceral Leishmaniasis (VL) with pentavalent antimonial organic salts, never described in Morocco before. Here we report a case in an immunocompetent adult. Case: A 36-year-old-man from Tata in southern Morocco, with a history of visceral Leishmaniasis 2 years before and treated with meglumine antimoniate and amphotericin B with good clinical course, was hospitalized in dermatology for an erythematous papulo-nodular closet of the face. Six months ago, he presented oral mucosa involvement, then 3 months later, cutaneous lesions appeared on the face. The dermatological examination revealed a papulo-nodular erythematous closet extending to the nose and both cheeks, crusty and lupoid lesions on the forehead, around the eyes and chin, associated with an ulcerative and painless lesion on the heeL. The examination of the oral mucosa revealed an ulceration of the posterior third of the tongue and a papillomatous aspect of the soft palate. The skin biopsy and smear found some amastigote forms of Leishmania bodies. ITS1 PCR was positive (genus Leishmania). The HIV serology was negative. The diagnosis of PKDL was then evoked. The patient received intra-muscular injections of meglumine antimoniate with good progress. Conclusion: To our knowledge, this is the first case of generalised leishmaniasis suggesting PKDL reported in a Moroccan immunocompetent adult.


Assuntos
Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Adulto , Anfotericina B/uso terapêutico , Humanos , Leishmaniose Cutânea/complicações , Leishmaniose Visceral/complicações , Masculino , Antimoniato de Meglumina/uso terapêutico
8.
Cytokine ; 147: 155248, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807586

RESUMO

Cutaneous leishmaniasis (CL) is a vector-borne parasitic disease caused by Protozoa of the genus Leishmania. Clinical manifestations of this disease are the result of a complex interplay of diverse factors, including the genetic background and the immune status of the host. Understanding the impact of these factors on the CL pathology may provide new targets to manage the infection and improve clinical outcome. The NLRP3 inflammasome, an innate immune complex of several cell types, seems to be involved in the CL physiopathology. Current studies of its role show contradictory effects of this complex on the evolution of Leishmania infection in mice and humans. In this review, we discuss the data regarding different roles of the NLRP3 inflammasome in murine and human CL.


Assuntos
Inflamassomos/metabolismo , Leishmaniose Cutânea/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Humanos , Leishmania/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA