Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Ecol Lett ; 26(11): 1940-1950, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694760

RESUMO

Understanding environmental drivers of species diversity has become increasingly important under climate change. Different trophic groups (predators, omnivores and herbivores) interact with their environments in fundamentally different ways and may therefore be influenced by different environmental drivers. Using random forest models, we identified drivers of terrestrial mammals' total and proportional species richness within trophic groups at a global scale. Precipitation seasonality was the most important predictor of richness for all trophic groups. Richness peaked at intermediate precipitation seasonality, indicating that moderate levels of environmental heterogeneity promote mammal richness. Gross primary production (GPP) was the most important correlate of the relative contribution of each trophic group to total species richness. The strong relationship with GPP demonstrates that basal-level resource availability influences how diversity is structured among trophic groups. Our findings suggest that environmental characteristics that influence resource temporal variability and abundance are important predictors of terrestrial mammal richness at a global scale.


Assuntos
Biodiversidade , Mamíferos , Animais , Herbivoria
2.
Oecologia ; 199(1): 193-204, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35523981

RESUMO

Biodiversity is declining at an unprecedented rate, highlighting the urgent requirement for well-designed protected areas. Design tactics previously proposed to promote biodiversity include enhancing the number, connectivity, and heterogeneity of reserve patches. However, how the importance of these features changes depending on what the conservation objective is remains poorly understood. Here we use experimental landscapes containing ciliate protozoa to investigate how the number and heterogeneity in size of habitat patches, rates of dispersal between neighbouring patches, and mortality risk of dispersal across the non-habitat 'matrix' interact to affect a number of diversity measures. We show that increasing the number of patches significantly increases γ diversity and reduces the overall number of extinctions, whilst landscapes with heterogeneous patch sizes have significantly higher γ diversity than those with homogeneous patch sizes. Furthermore, the responses of predators depended on their feeding specialism, with generalist predator presence being highest in a single large patch, whilst specialist predator presence was highest in several-small patches with matrix dispersal. Our evidence emphasises the importance of considering multiple diversity measures to disentangle community responses to patch configuration.


Assuntos
Cilióforos , Ecossistema , Biodiversidade , Probabilidade
3.
Ecotoxicology ; 31(5): 836-845, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524029

RESUMO

Wetland plants tolerate potentially hazardous metals through a variety of strategies, including exclusion or accumulation. Whether plants sequester metals and where they store them in their tissues is important for understanding the potential role of plants as remediators or vectors of metals to terrestrial food webs. Here we evaluate metal sequestration in Great Salt Lake wetlands for one invasive (Phragmites australis; phragmites) and three native plant species, i.e. threesquare bulrush (Schoenoplectus americanus), hardstem bulrush (Schoenoplectus acutus), alkali bulrush (Bolboschoenus maritimus), and their terrestrial invertebrates. We observed higher concentrations of arsenic and copper than other metals in plant tissues, although high lead concentrations were observed in phragmites. All plants acted as excluders of arsenic and selenium, retaining the bulk of the metal mass in belowground tissues. In contrast, lead, copper, and cadmium were transferred to above ground tissues of hardstem bulrush and phragmites. The aboveground translocation facilitated the movement of these metals into invertebrates, with the highest concentrations in most cases found in predators. Though our results highlight the potential for metal remediation via wetland plant growth and removal, care should be taken to ensure that remediation efforts do not lead to bioaccumulation.


Assuntos
Arsênio , Metais Pesados , Cobre , Cadeia Alimentar , Chumbo , Plantas , Poaceae , Áreas Alagadas
4.
Ecol Evol ; 12(2): e8665, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35228865

RESUMO

Future climate changes are predicted to not only increase global temperatures but also alter temporal variation in temperature. As thermal tolerances form an important component of a species' niche, changes to the temperature regime have the capacity to negatively impact species, and therefore, the diversity of the communities they inhabit. In this study, we used protist microcosms to assess how mean temperature, as well as temporal variation in temperature, affected diversity. Communities consisted of seven species in a multitrophic food web. Each ecosystem was inoculated with the same abundances of each species at the start of the experiment, and species densities, Hill's numbers (based on Shannon diversity), the number of extinctions, and the probability the microcosm contained predators were all calculated at the end of the experiment. To assess how mean temperature and temperature fluctuations affect stability, we also measured population densities through time. We found that increased temporal variation in temperature increased final densities, increased Hill's numbers (at low mean temperatures), decreased rates of extinctions, and increased the probability that predators survived till the end of the experiment. Mean temperatures did not significantly affect either the number of extinctions or the probability of predators, but did reduce the positive effect of increased temporal variation in temperature on overall diversity. Our results indicate that climatic changes have the potential to impact the composition of ecological communities by altering multiple components of temperature regimes. However, given that some climate forecasts are predicting increased mean temperatures and reduced variability, our finding that increased mean temperature and reduced temporal variation are both generally associated with negative consequences is somewhat concerning.

5.
Sci Adv ; 6(32): eabb8458, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923612

RESUMO

As a result of their extensive home ranges and slow population growth rates, predators have often been perceived to suffer higher risks of extinction than other trophic groups. Our study challenges this extinction-risk paradigm by quantitatively comparing patterns of extinction risk across different trophic groups of mammals, birds, and reptiles. We found that trophic level and body size were significant factors that influenced extinction risk in all taxa. At multiple spatial and temporal scales, herbivores, especially herbivorous reptiles and large-bodied herbivores, consistently have the highest proportions of threatened species. This observed elevated extinction risk for herbivores is ecologically consequential, given the important roles that herbivores are known to play in controlling ecosystem function.


Assuntos
Ecossistema , Herbivoria , Animais , Aves , Extinção Biológica , Mamíferos , Répteis
6.
Sci Rep ; 10(1): 11925, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681147

RESUMO

Crucial to the successful conservation of endangered species is the overlap of their ranges with protected areas. We analyzed protected areas in the continental USA to assess the extent to which they covered the ranges of endangered tetrapods. We show that in 80% of ecoregions, protected areas offer equal (25%) or worse (55%) protection for species than if their locations were chosen at random. Additionally, we demonstrate that it is possible to achieve sufficient protection for 100% of the USA's endangered tetrapods through targeted protection of undeveloped public and private lands. Our results highlight that the USA is likely to fall short of its commitments to halting biodiversity loss unless more considerable investments in both public and private land conservation are made.

7.
Nat Commun ; 11(1): 3215, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587246

RESUMO

Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics.


Assuntos
Bromelia , Ecossistema , Inundações , Água Doce , Animais , Biodiversidade , Biomassa , Mudança Climática , Secas , Cadeia Alimentar , Hidrologia , América do Sul
8.
Oecologia ; 192(4): 879-891, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32067120

RESUMO

Individual species can have profound effects on ecological communities, but, in hyperdiverse systems, it can be challenging to determine the underlying ecological mechanisms. Simplifying species' responses by trophic level or functional group may be useful, but characterizing the trait structure of communities may be better related to niche processes. A largely overlooked trait in such community-level analyses is behaviour. In the Neotropics, epiphytic tank bromeliads (Bromeliaceae) harbour a distinct fauna of terrestrial invertebrates that is mainly composed of predators, such as ants and spiders. As these bromeliad-associated predators tend to forage on the bromeliads' support tree, they may influence the arboreal invertebrate fauna. We examined how, by increasing associated predator habitat, bromeliads may affect arboreal invertebrates. Specifically, we observed the trophic and functional group composition, and the behaviour and interspecific interactions of arboreal invertebrates in trees with and without bromeliads. Bromeliads modified the functional composition of arboreal invertebrates, but not the overall abundance of predators and herbivores. Bromeliads did not alter the overall behavioural profile of arboreal invertebrates, but did lead to more positive interactions in the day than at night, with a reverse pattern on trees without bromeliads. In particular, tending behaviours were influenced by bromeliad-associated predators. These results indicate that detailed examination of the functional affiliations and behaviour of organisms can reveal complex effects of habitat-forming species like bromeliads, even when total densities of trophic groups are insensitive.


Assuntos
Formigas , Bromeliaceae , Animais , Ecossistema , Invertebrados , Árvores
9.
Ecol Lett ; 23(4): 682-691, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32048416

RESUMO

Designing protected area configurations to maximise biodiversity is a critical conservation goal. The configuration of protected areas can significantly impact the richness and identity of the species found there; one large patch supports larger populations but can facilitate competitive exclusion. Conversely, many small habitats spreads risk but may exclude predators that typically require large home ranges. Identifying how best to design protected areas is further complicated by monitoring programs failing to detect species. Here we test the consequences of different protected area configurations using multi-trophic level experimental microcosms. We demonstrate that for a given total size, many small patches generate higher species richness, are more likely to contain predators, and have fewer extinctions compared to single large patches. However, the relationship between the size, number of patches, and species richness was greatly affected by insufficient monitoring, and could lead to incorrect conservation decisions, especially for higher trophic levels.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Ecossistema
10.
Ecology ; 101(4): e02984, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31958151

RESUMO

There is growing recognition that ecosystems may be more impacted by infrequent extreme climatic events than by changes in mean climatic conditions. This has led to calls for experiments that explore the sensitivity of ecosystems over broad ranges of climatic parameter space. However, because such response surface experiments have so far been limited in geographic and biological scope, it is not clear if differences between studies reflect geographic location or the ecosystem component considered. In this study, we manipulated rainfall entering tank bromeliads in seven sites across the Neotropics, and characterized the response of the aquatic ecosystem in terms of invertebrate functional composition, biological stocks (total invertebrate biomass, bacterial density) and ecosystem fluxes (decomposition, carbon, nitrogen). Of these response types, invertebrate functional composition was the most sensitive, even though, in some sites, the species pool had a high proportion of drought-tolerant families. Total invertebrate biomass was universally insensitive to rainfall change because of statistical averaging of divergent responses between functional groups. The response of invertebrate functional composition to rain differed between geographical locations because (1) the effect of rainfall on bromeliad hydrology differed between sites, and invertebrates directly experience hydrology not rainfall and (2) the taxonomic composition of some functional groups differed between sites, and families differed in their response to bromeliad hydrology. These findings suggest that it will be difficult to establish thresholds of "safe ecosystem functioning" when ecosystem components differ in their sensitivity to climatic variables, and such thresholds may not be broadly applicable over geographic space. In particular, ecological forecast horizons for climate change may be spatially restricted in systems where habitat properties mediate climatic impacts, and those, like the tropics, with high spatial turnover in species composition.


Assuntos
Mudança Climática , Ecossistema , Animais , Secas , Invertebrados , Chuva
11.
Sci Rep ; 9(1): 20046, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882751

RESUMO

Medium and large carnivores coexist with people in urban areas globally, occasionally resulting in negative interactions that prompt questions about how to reduce human-wildlife conflict. Hazing, i.e., scaring wildlife, is frequently promoted as an important non-lethal means for urbanites to reduce conflict but there is limited scientific evidence for its efficacy. We used a population of captive coyotes (Canis latrans) to simulate urban human-coyote interactions and subsequent effects of hazing on coyote behavior. Past experiences with humans significantly affected the number of times a coyote approached a human to necessitate hazing. Coyotes that had been hand fed by adults had to be more frequently hazed than coyotes with other or no past experiences with adults. Past experience with children had no impact on the number of hazing events. The number of times a coyote approached an adult or child was reduced across days based on the accumulative number of times hazed, suggesting coyotes learn to avoid behaviors warranting hazing and that this could be used as a non-lethal management tool. However, prior experience and whether the interaction is with an adult or child can alter the outcomes of hazing and must be considered in determining the efficacy of hazing programs.


Assuntos
Animais Selvagens , Comportamento Animal , Coiotes/fisiologia , Animais , Ecossistema , Humanos
12.
Oecologia ; 190(1): 219-227, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31098774

RESUMO

Human activities such as the application of agrochemicals may detrimentally disturb natural ecosystems, generating novel selection pressures. Here we examine how pesticides may influence community composition using the aquatic communities within bromeliad phytotelmata, and how adaptive responses to pesticides may influence community-level patterns. We first quantified the composition of macroinvertebrate communities from pesticide-free and pesticide-exposed locations. Complementary manipulative experiments where bromeliads were transplanted between pesticide-free and pesticide-exposed sites were then performed. Finally, pesticide bioassays on the most common predators (Mecistogaster modesta damselflies) and prey (Wyeomyia abebela mosquitoes) assessed a potential evolutionary mechanism that may influence community compositional differences. Our field survey revealed differences in W. abebela and M. modesta abundances between pesticide-free and pesticide-exposed areas. Our transplant experiment suggested compositional differences were not due to physical differences between bromeliads from different locations. Pesticide bioassays revealed that M. modesta from pesticide-free locations had higher innate pesticide tolerances than W. abebela from pesticide-free areas, but M. modesta larvae showed no evidence of adapted resistance as none were found where pesticides were used. Conversely, W. abebela larvae from pesticide-exposed locations had higher pesticide tolerances than individuals from pesticide-free sites, suggesting an adaptive response. This evolved resistance to pesticides may, therefore, allow W. abebela to colonize habitats free of the dominant predator in the system, explaining the higher W. abebela abundances in pesticide-exposed areas than in pesticide-free locations. We suggest that the total effect of novel stressors is driven by interactions between ecological and evolutionary processes.


Assuntos
Culicidae , Odonatos , Praguicidas , Agricultura , Animais , Ecossistema , Humanos
13.
Ecology ; 99(11): 2467-2475, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30289979

RESUMO

Consensus has emerged in the literature that increased biodiversity enhances the capacity of ecosystems to perform multiple functions. However, most biodiversity/ecosystem function studies focus on a single ecosystem, or on landscapes of homogenous ecosystems. Here, we investigate how increased landscape-level environmental dissimilarity may affect the relationship between different metrics of diversity (α, ß, or γ) and ecosystem function. We produced a suite of simulated landscapes, each of which contained four experimental outdoor aquatic mesocosms. Differences in temperature and nutrient conditions of the mesocosms allowed us to simulate landscapes containing a range of within-landscape environmental heterogeneities. We found that the variation in ecosystem functions was primarily controlled by environmental conditions, with diversity metrics accounting for a smaller (but significant) amount of variation in function. When landscapes were more homogeneous, α, ß, and γ diversity was not associated with differences in primary production, and only γ was associated with changes in decomposition. In these homogeneous landscapes, differences in these two ecosystem functions were most strongly related to nutrient and temperature conditions in the ecosystems. However, as landscape-level environmental dissimilarity increased, the relationship between α, ß, or γ and ecosystem functions strengthened, with ß being a greater predictor of variation in decomposition at the highest levels of environmental dissimilarity than α or γ. We propose that when all ecosystems in a landscape have similar environmental conditions, species sorting is likely to generate a single community composition that is well suited to those environmental conditions, ß is low, and the efficiency of diversity-ecosystem function couplings is similar across communities. Under this low ß, the effect of abiotic conditions on ecosystem function will be most apparent. However, when environmental conditions vary among ecosystems, species sorting pressures are different among ecosystems, producing different communities among locations in a landscape. These conditions lead to stronger relationships between ß and the magnitude of ecosystem functions. Our results illustrate that abiotic conditions and the homogeneity of communities influence ecosystem function expressed at the landscape scale.


Assuntos
Biodiversidade , Ecossistema
14.
Front Plant Sci ; 9: 1289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233626

RESUMO

Food web theory predicts that current global declines in marine predators could generate unwanted consequences for many marine ecosystems. In coastal plant communities (kelp, seagrass, mangroves, and salt marsh), several studies have documented the far-reaching effects of changing predator populations. Across coastal ecosystems, the loss of marine predators appears to negatively affect coastal plant communities and the ecosystem services they provide. Here, we discuss some of the documented and suspected effects of predators on coastal protection, carbon sequestration, and the stability and resilience of coastal plant communities. In addition, we present a meta-analysis to assess the strength and direction of trophic cascades in kelp forests, seagrasses, salt marshes, and mangroves. We demonstrate that the strength and direction of trophic cascades varied across ecosystem types, with predators having a large positive effect on plants in salt marshes, a moderate positive effect on plants in kelp and mangroves, and no effect on plants in seagrasses. Our analysis also identified that there is a paucity of literature on trophic cascades for all four coastal plant systems, but especially seagrass and mangroves. Our results demonstrate the crucial role of predators in maintaining coastal ecosystem services, but also highlights the need for further research before large-scale generalizations about the prevalence, direction, and strength of trophic cascade in coastal plant communities can be made.

15.
PLoS One ; 13(9): e0204149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235270

RESUMO

In the United States, the Clean Water Act (CWA) establishes water quality standards important for maintaining healthy freshwater ecosystems. Within the CWA framework, states define their own water quality criteria, leading to a potential fragmentation of standards between states. This fragmentation can influence the management of shared water resources and produce spillover effects of pollutants crossing state lines and other political boundaries. We used numerical simulations to test the null prediction of no difference in impairment between watersheds that cross political boundaries (i.e. state lines, national or coastal borders, hereafter termed "transboundary") and watersheds that cross no boundaries (hereafter "internal"). We found that transboundary watersheds are more likely to be impaired than internal watersheds. Further, we examined possible causes for this relationship based on both geographic and sociopolitical drivers. Though geographic variables such as human-modified land cover and the amount of upstream catchment area are associated with watershed impairment, the number and type of agencies managing land within a watershed better explained the different impairment levels between transboundary and internal watersheds. Watersheds primarily consisting of public lands are less impaired than watersheds consisting of private lands. Similarly, watersheds primarily managed by federal agencies are less impaired than state-managed watersheds. Our results highlight the importance of considering Integrated Watershed Management strategies for water resources within a fragmented policy framework.


Assuntos
Geografia , Qualidade da Água , Água , Estados Unidos
16.
Glob Chang Biol ; 24(1): e128-e138, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28850765

RESUMO

The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO2 370 µatm) or end-of-the-century OA (pCO2 1,100 µatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective.


Assuntos
Dióxido de Carbono/química , Cubomedusas/fisiologia , Comportamento Predatório/fisiologia , Água do Mar/química , Zooplâncton/fisiologia , Animais , Cadeia Alimentar , Concentração de Íons de Hidrogênio
17.
PLoS One ; 10(6): e0129342, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26058068

RESUMO

Seabird population changes are good indicators of long-term and large-scale change in marine ecosystems, and important because of their many impacts on marine ecosystems. We assessed the population trend of the world's monitored seabirds (1950-2010) by compiling a global database of seabird population size records and applying multivariate autoregressive state-space (MARSS) modeling to estimate the overall population trend of the portion of the population with sufficient data (i.e., at least five records). This monitored population represented approximately 19% of the global seabird population. We found the monitored portion of the global seabird population to have declined overall by 69.7% between 1950 and 2010. This declining trend may reflect the global seabird population trend, given the large and apparently representative sample. Furthermore, the largest declines were observed in families containing wide-ranging pelagic species, suggesting that pan-global populations may be more at risk than shorter-ranging coastal populations.


Assuntos
Charadriiformes/fisiologia , Dinâmica Populacional/tendências , Animais , Ecossistema , Densidade Demográfica
18.
Oecologia ; 178(4): 1149-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25820788

RESUMO

Dispersal decisions underlie the spatial dynamics of metacommunities. Prey individuals may disperse to reduce the risk of either predation or starvation, and both of these risks may depend on conspecific density. Surprisingly, there is little theory examining how dispersal rates should change in response to the combined effects of predation and changes in conspecific density. We develop such a model and show that, under certain conditions, predators may induce dispersal at low prey densities but not high prey densities. We then experimentally manipulate the density of the ciliate Paramecium aurelia and the perceived presence of its predator, the flatworm Stenostomum virginiamum, in a two-patch metacommunity to parameterise the model. Paramecium dispersed in response to Stenostomum at low densities, but they reduced their dispersal in response to predation risk at high predator densities. By applying our model to the empirical data, we show that this switch in dispersal strategy, linked to increases in prey density, occurred because predators increased the difficulty or risk of dispersal. Together, the model and experiment reveal that the effects of predators on dispersal are contingent on prey density. Previous studies have sometimes reported an increase in dispersal rate when predation risk is elevated, and other times a decrease in dispersal rate. Our demonstration of a switch point, with predation risk increasing dispersal at low prey densities but reducing dispersal above a threshold of prey density, may reconcile the diversity of prey dispersal behaviours reported in these previous investigations and observed in nature.


Assuntos
Distribuição Animal , Modelos Biológicos , Comportamento Predatório , Animais , Cilióforos , Modelos Teóricos , Paramecium aurelia , Densidade Demográfica , Dinâmica Populacional , Turbelários
19.
Oecologia ; 178(2): 549-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25656586

RESUMO

The strength of interspecific interactions is often proposed to affect food web stability, with weaker interactions increasing the persistence of species, and food webs as a whole. However, the mechanisms that modify interaction strengths, and their effects on food web persistence are not fully understood. Using food webs containing different combinations of predator, prey, and nonprey species, we investigated how predation risk of susceptible prey is affected by the presence of species not directly trophically linked to either predators or prey. We predicted that indirect alterations to the strength of trophic interactions translate to changes in persistence time of extinction-prone species. We assembled interaction webs of protist consumers and turbellarian predators with eight different combinations of prey, predators and nonprey species, and recorded abundances for over 130 prey generations. Persistence of predation-susceptible species was increased by the presence of nonprey. Furthermore, multiple nonprey species acted synergistically to increase prey persistence, such that persistence was greater than would be predicted from the dynamics of simpler food webs. We also found evidence suggesting increased food web complexity may weaken interspecific competition, increasing persistence of poorer competitors. Our results demonstrate that persistence times in complex food webs cannot be predicted from the dynamics of simplified systems, and that species not directly involved in consumptive interactions likely play key roles in maintaining persistence. Global species diversity is currently declining at an unprecedented rate and our findings reveal that concurrent loss of species that modify trophic interactions may have unpredictable consequences for food web stability.


Assuntos
Biodiversidade , Extinção Biológica , Cadeia Alimentar , Dinâmica Populacional , Comportamento Predatório , Animais , Ecologia , Turbelários
20.
Conserv Biol ; 29(3): 865-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25580637

RESUMO

Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid-zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation planning.


Assuntos
Migração Animal , Aves/fisiologia , Conservação dos Recursos Naturais , Extinção Biológica , Animais , Austrália , Mudança Climática , Clima Desértico , Modelos Biológicos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA