Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Rep Methods ; 4(2): 100714, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412833

RESUMO

Anopheles gambiae uses its sense of smell to hunt humans. We report a two-step method yielding cell-type-specific driver lines for enhanced neuroanatomical and functional studies of its olfactory system. We first integrated a driver-responder-marker (DRM) system cassette consisting of a linked T2A-QF2 driver, QUAS-GFP responder, and a gut-specific transgenesis marker into four chemoreceptor genes (Ir25a, Ir76b, Gr22, and orco) using CRISPR-Cas9-mediated homology-directed repair. The DRM system facilitated rapid selection of in-frame integrations via screening for GFP+ olfactory sensory neurons (OSNs) in G1 larval progeny, even at genomic loci such as orco where we found the transgenesis marker was not visible. Next, we converted these DRM integrations into T2A-QF2 driver-marker lines by Cre-loxP excision of the GFP responder, making them suitable for binary use in transcuticular calcium imaging. These cell-type-specific driver lines tiling key OSN subsets will support systematic efforts to decode olfaction in this prolific malaria vector.


Assuntos
Anopheles , Malária , Neurônios Receptores Olfatórios , Animais , Humanos , Olfato/genética , Anopheles/genética , Mosquitos Vetores/genética
2.
Curr Biol ; 33(21): 4697-4703.e4, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37774706

RESUMO

Dosage compensation (DC), a process countering chromosomal imbalance in individuals with heteromorphic sex chromosomes, has been molecularly characterized only in mammals, Caenorhabditis elegans, and fruit flies.1 In Drosophila melanogaster males, it is achieved by an approximately 2-fold hypertranscription of the monosomic X chromosome mediated by the MSL complex.2,3 The complex is not assembled on female X chromosomes because production of its key protein MSL-2 is prevented due to intron retention and inhibition of translation by Sex-lethal, a female-specific protein operating at the top of the sex determination pathway.4 It remains unclear how DC is mechanistically regulated in other insects. In the malaria mosquito Anopheles gambiae, an approximately 2-fold hypertranscription of the male X also occurs5 by a yet-unknown molecular mechanism distinct from that in D. melanogaster.6 Here we show that a male-specifically spliced gene we call 007, which arose by a tandem duplication in the Anopheles ancestral lineage, is involved in the control of DC in males. Homozygous 007 knockouts lead to a global downregulation of the male X, phenotypically manifested by a slower development compared to wild-type mosquitoes or mutant females-however, without loss of viability or fertility. In females, a 007 intron retention promoted by the sex determination protein Femaleless, known to prevent hypertranscription from both X chromosomes,7 introduces a premature termination codon apparently rendering the female transcripts non-productive. In addition to providing a unique perspective on DC evolution, the 007, with its conserved properties, may represent an important addition to a genetic toolbox for malaria vector control.


Assuntos
Anopheles , Proteínas de Drosophila , Malária , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Anopheles/genética , Fator X/genética , Malária/genética , Mosquitos Vetores , Cromossomo X/genética , Drosophila/genética , Proteínas de Drosophila/genética , Mamíferos/genética
3.
PLoS One ; 18(7): e0288439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437087

RESUMO

The purpose of this study was to compare the effects of a parkour-based warm-up to a conventional neuromuscular training (NMT) warm-up on the athletic capabilities of youth basketball players. This was examined through two arms: In Investigation 1, the aims were to measure the effects of the two warm-ups on physical measures of athletic performance in prepubescent basketball players. Using post-intervention semi-structured interviews, Investigation 2 aimed to gain insights from the players in relation to the perceived benefits of the two warm-ups. Pre-adolescent children were recruited from two youth level basketball teams. Participants from one club were randomly assigned to either a conventional NMT warm-up group or a parkour warm-up group, while a control group was formed of participants from the second club. Participants of both experimental groups were required to complete a 15-minute warm-up once per week before their regular basketball practice across 8-weeks. For both groups, the coach adopted the same pedagogical approach, utilising a guided discovery strategy. Pre-post test measures of overhead squat performance, countermovement jump, and 10-metre sprint speed were recorded in all three groups. Additionally, pre-post measures were recorded for a timed parkour-based obstacle course for the two experimental groups. No significant between-group differences were found between pre- and post-test measures. However, analysis using Cohen's d effect sizes revealed improvements in both intervention groups versus the control. Moreover, between group effect size differences were observed between the two experimental groups. Following the intervention, participants from both experimental groups were also invited to take part in a post-intervention semi-structured interview to discuss their experiences. The thematic analysis of these semi-structured interviews revealed three higher order themes: Enjoyment; Physical literacy; and Docility; of which the two former themes appear to align to constructs relating to the wider concept of physical literacy. In summary, warm-ups designed to improve athleticism can include less structured and more diverse movement skills than are typical of conventional NMT warm-ups. Specifically, we provide evidence that advocates for warm ups that include parkour-related activities alongside conventional NMT exercises to preserve physical fitness qualities and to simultaneously evoke a sense of enjoyment, fun, and purpose. The benefit of such activities may extend beyond athletic development and, more broadly, contribute to the development of physical literacy.


Assuntos
Basquetebol , Exercício de Aquecimento , Criança , Adolescente , Humanos , Exercício Físico , Terapia por Exercício , Aptidão Física
4.
CRISPR J ; 5(6): 868-876, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36378258

RESUMO

The introduction of small unmarked edits to the genome of insects is essential to study the molecular underpinnings of important biological traits, such as resistance to insecticides and genetic control strategies. Advances in CRISPR genome engineering have made this possible, but prohibitively laborious for most laboratories due to low rates of editing and the lack of a selectable marker. To facilitate the generation and isolation of precise marker-less edits we have developed a two-step method based on CRISPR-mediated cassette exchange (CriMCE) of a marked placeholder for a variant of interest. This strategy can be used to introduce a wider range of potential edits compared with previous approaches while consolidating the workflow. We present proof-of-principle that CriMCE is a powerful tool by engineering three single nucleotide polymorphism variants into the genome of Anopheles gambiae, with 5-41 × higher rates of editing than homology-directed repair or prime editing.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Reparo de DNA por Recombinação , Genoma
5.
PLoS Genet ; 17(10): e1009740, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610011

RESUMO

CRISPR-based homing gene drives can be designed to disrupt essential genes whilst biasing their own inheritance, leading to suppression of mosquito populations in the laboratory. This class of gene drives relies on CRISPR-Cas9 cleavage of a target sequence and copying ('homing') therein of the gene drive element from the homologous chromosome. However, target site mutations that are resistant to cleavage yet maintain the function of the essential gene are expected to be strongly selected for. Targeting functionally constrained regions where mutations are not easily tolerated should lower the probability of resistance. Evolutionary conservation at the sequence level is often a reliable indicator of functional constraint, though the actual level of underlying constraint between one conserved sequence and another can vary widely. Here we generated a novel adult lethal gene drive (ALGD) in the malaria vector Anopheles gambiae, targeting an ultra-conserved target site in a haplosufficient essential gene (AGAP029113) required during mosquito development, which fulfils many of the criteria for the target of a population suppression gene drive. We then designed a selection regime to experimentally assess the likelihood of generation and subsequent selection of gene drive resistant mutations at its target site. We simulated, in a caged population, a scenario where the gene drive was approaching fixation, where selection for resistance is expected to be strongest. Continuous sampling of the target locus revealed that a single, restorative, in-frame nucleotide substitution was selected. Our findings show that ultra-conservation alone need not be predictive of a site that is refractory to target site resistance. Our strategy to evaluate resistance in vivo could help to validate candidate gene drive targets for their resilience to resistance and help to improve predictions of the invasion dynamics of gene drives in field populations.


Assuntos
Sistemas CRISPR-Cas/genética , Sequência Conservada/genética , Animais , Anopheles/genética , Evolução Biológica , Tecnologia de Impulso Genético/métodos , Genes Essenciais/genética , Genótipo , Malária/parasitologia , Controle de Mosquitos/métodos , Mosquitos Vetores/genética
6.
Nat Commun ; 12(1): 4589, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321476

RESUMO

CRISPR-based gene-drives targeting the gene doublesex in the malaria vector Anopheles gambiae effectively suppressed the reproductive capability of mosquito populations reared in small laboratory cages. To bridge the gap between laboratory and the field, this gene-drive technology must be challenged with vector ecology.Here we report the suppressive activity of the gene-drive in age-structured An. gambiae populations in large indoor cages that permit complex feeding and reproductive behaviours.The gene-drive element spreads rapidly through the populations, fully supresses the population within one year and without selecting for resistance to the gene drive. Approximate Bayesian computation allowed retrospective inference of life-history parameters from the large cages and a more accurate prediction of gene-drive behaviour under more ecologically-relevant settings.Generating data to bridge laboratory and field studies for invasive technologies is challenging. Our study represents a paradigm for the stepwise and sound development of vector control tools based on gene-drive.


Assuntos
Anopheles/genética , Tecnologia de Impulso Genético , Mosquitos Vetores/genética , Animais , Animais Geneticamente Modificados , Teorema de Bayes , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Abrigo para Animais , Malária/transmissão , Controle de Mosquitos , Estudos Retrospectivos
7.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050017

RESUMO

CRISPR-Cas9 nuclease-based gene drives have been developed toward the aim of control of the human malaria vector Anopheles gambiae Gene drives are based on an active source of Cas9 nuclease in the germline that promotes super-Mendelian inheritance of the transgene by homology-directed repair ("homing"). Understanding whether CRISPR-induced off-target mutations are generated in Anopheles mosquitoes is an important aspect of risk assessment before any potential field release of this technology. We compared the frequencies and the propensity of off-target events to occur in four different gene-drive strains, including a deliberately promiscuous set-up, using a nongermline restricted promoter for SpCas9 and a guide RNA with many closely related sites (two or more mismatches) across the mosquito genome. Under this scenario we observed off-target mutations at frequencies no greater than 1.42%. We witnessed no evidence that CRISPR-induced off-target mutations were able to accumulate (or drive) in a mosquito population, despite multiple generations' exposure to the CRISPR-Cas9 nuclease construct. Furthermore, judicious design of the guide RNA used for homing of the CRISPR construct, combined with tight temporal constriction of Cas9 expression to the germline, rendered off-target mutations undetectable. The findings of this study represent an important milestone for the understanding and managing of CRISPR-Cas9 specificity in mosquitoes, and demonstrates that CRISPR off-target editing in the context of a mosquito gene drive can be reduced to minimal levels.


Assuntos
Anopheles/genética , Sistemas CRISPR-Cas , Edição de Genes , Genoma de Inseto , Malária , Mosquitos Vetores/genética , Animais , Humanos
8.
PLoS Genet ; 17(1): e1009321, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513149

RESUMO

Homing-based gene drives use a germline source of nuclease to copy themselves at specific target sites in a genome and bias their inheritance. Such gene drives can be designed to spread and deliberately suppress populations of malaria mosquitoes by impairing female fertility. However, strong unintended fitness costs of the drive and a propensity to generate resistant mutations can limit a gene drive's potential to spread. Alternative germline regulatory sequences in the drive element confer improved fecundity of carrier individuals and reduced propensity for target site resistance. This is explained by reduced rates of end-joining repair of DNA breaks from parentally deposited nuclease in the embryo, which can produce heritable mutations that reduce gene drive penetrance. We tracked the generation and selection of resistant mutations over the course of a gene drive invasion of a population. Improved gene drives show faster invasion dynamics, increased suppressive effect and later onset of target site resistance. Our results show that regulation of nuclease expression is as important as the choice of target site when developing a robust homing-based gene drive for population suppression.


Assuntos
Culicidae/genética , Endonucleases/genética , Aptidão Genética/genética , Malária/genética , Alelos , Animais , Sistemas CRISPR-Cas/genética , Culicidae/parasitologia , Reparo do DNA por Junção de Extremidades/genética , Drosophila melanogaster/genética , Ovos/parasitologia , Fertilidade/genética , Mutação em Linhagem Germinativa/genética , Heterozigoto , Humanos , Larva/genética , Larva/parasitologia , Malária/epidemiologia , Malária/parasitologia , Malária/transmissão
9.
Nat Biotechnol ; 38(9): 1097, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32764730

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Biotechnol ; 38(9): 1054-1060, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32393821

RESUMO

Only female insects transmit diseases such as malaria, dengue and Zika; therefore, control methods that bias the sex ratio of insect offspring have long been sought. Genetic elements such as sex-chromosome drives can distort sex ratios to produce unisex populations that eventually collapse, but the underlying molecular mechanisms are unknown. We report a male-biased sex-distorter gene drive (SDGD) in the human malaria vector Anopheles gambiae. We induced super-Mendelian inheritance of the X-chromosome-shredding I-PpoI nuclease by coupling this to a CRISPR-based gene drive inserted into a conserved sequence of the doublesex (dsx) gene. In modeling of invasion dynamics, SDGD was predicted to have a quicker impact on female mosquito populations than previously developed gene drives targeting female fertility. The SDGD at the dsx locus led to a male-only population from a 2.5% starting allelic frequency in 10-14 generations, with population collapse and no selection for resistance. Our results support the use of SDGD for malaria vector control.


Assuntos
Anopheles/genética , Tecnologia de Impulso Genético/métodos , Malária/transmissão , Mosquitos Vetores/genética , Processos de Determinação Sexual/genética , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Malária/prevenção & controle , Masculino , Controle de Mosquitos , Cromossomo X/genética , Cromossomo X/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(11): 5714-5718, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32127476

RESUMO

The replica theory of glasses predicts that in the infinite dimensional mean field limit, there exist two distinct glassy phases of matter: stable glass and marginal glass. We have developed a technique to experimentally probe these phases of matter using a colloidal glass. We avoid the difficulties inherent in measuring the long time behavior of glasses by instead focusing on the very short time dynamics of the ballistic to caged transition. We track a single tracer particle within a slowly densifying glass and measure the resulting mean squared displacement (MSD). By analyzing the MSD, we find that upon densification, our colloidal system moves through several states of matter. At lowest densities, it is a subdiffusive liquid. Next, it behaves as a stable glass, marked by the appearance of a plateau in the MSD whose magnitude shrinks with increasing density. However, this shrinking plateau does not shrink to zero; instead, at higher densities, the system behaves as a marginal glass, marked by logarithmic growth in the MSD toward that previous plateau value. Finally, at the highest experimental densities, the system returns to the stable glass phase. This provides direct experimental evidence for the existence of a marginal glass in three dimensions.

12.
Intern Med J ; 50(1): 114-117, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943625

RESUMO

Whether part of the blood pressure lowering effects of glyceryl trinitrate (GTN) is the result of centrally mediated reduction in sympathetic activity is debated. In humans, baroreflex activity potentially obscures the central sympatholytic effects of GTN. We examined this in a routine clinical tilt test in a patient with baroreflex failure secondary to previous neck radiotherapy. With reduced baroreflex function we observed an exaggerated fall in blood pressure and reduced sympathetic activity with GTN, supporting a peripheral vasodilation and central sympatholytic effect.


Assuntos
Barorreflexo/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Nitroglicerina/uso terapêutico , Sistema Nervoso Simpático/efeitos dos fármacos , Vasodilatadores/uso terapêutico , Idoso , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Carcinoma Nasofaríngeo
13.
Proc Biol Sci ; 286(1914): 20191586, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662083

RESUMO

Gene drive is a natural process of biased inheritance that, in principle, could be used to control pest and vector populations. As with any form of pest control, attention should be paid to the possibility of resistance evolving. For nuclease-based gene drive aimed at suppressing a population, resistance could arise by changes in the target sequence that maintain function, and various strategies have been proposed to reduce the likelihood that such alleles arise. Even if these strategies are successful, it is almost inevitable that alleles will arise at the target site that are resistant to the drive but do not restore function, and the impact of such sequences on the dynamics of control has been little studied. We use population genetic modelling of a strategy targeting a female fertility gene to demonstrate that such alleles may be expected to accumulate, and thereby reduce the reproductive load on the population, if nuclease expression per se causes substantial heterozygote fitness effects or if parental (especially paternal) deposition of nuclease either reduces offspring fitness or affects the genotype of their germline. All these phenomena have been observed in synthetic drive constructs. It will, therefore, be important to allow for non-functional resistance alleles in predicting the dynamics of constructs in cage populations and the impacts of any field release.


Assuntos
Tecnologia de Impulso Genético , Genética Populacional , Alelos , Animais , Feminino , Células Germinativas , Reprodução
14.
Parasit Vectors ; 11(Suppl 2): 660, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30583738

RESUMO

Malaria is a serious global health burden, affecting more than 200 million people each year in over 90 countries, predominantly in Africa, Asia and the Americas. Since the year 2000, a concerted effort to combat malaria has reduced its incidence by more than 40%, primarily due to the use of insecticide-treated bednets, indoor residual spraying and artemisinin-based combination drug therapies. Nevertheless, the cost of control is expected to nearly triple over the next decade and the current downward trend in disease transmission is threatened by the rise of resistance to drugs and insecticides. Novel strategies that are sustainable and cost-effective are needed to help usher in an era of malaria elimination. The most effective strategies thus far have focussed on control of the mosquito vector. The sterile insect technique (SIT) is a potentially powerful strategy that aims to suppress mosquito populations through the unproductive mating of wild female mosquitoes with sterile males that are released en masse. The technique and its derivatives are currently not appropriate for malaria control because it is difficult to sterilise males without compromising their ability to mate, and because anopheline males cannot be easily separated from females, which if released, could contribute to disease transmission. Advances in genome sequencing technologies and the development of transgenic techniques provide the tools necessary to produce mosquito sexing strains, which promise to improve current malaria-control programs and pave the way for new ones. In this review, the progress made in the development of transgenic sexing strains for the control of Anopheles gambiae, a major vector of human malaria, is discussed.


Assuntos
Anopheles/genética , Infertilidade Masculina/genética , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Animais , Animais Geneticamente Modificados , Anopheles/fisiologia , Feminino , Engenharia Genética , Marcadores Genéticos/genética , Humanos , Malária/transmissão , Masculino , Mosquitos Vetores/fisiologia , Processos de Determinação Sexual
15.
Nat Biotechnol ; 36(11): 1062-1066, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30247490

RESUMO

In the human malaria vector Anopheles gambiae, the gene doublesex (Agdsx) encodes two alternatively spliced transcripts, dsx-female (AgdsxF) and dsx-male (AgdsxM), that control differentiation of the two sexes. The female transcript, unlike the male, contains an exon (exon 5) whose sequence is highly conserved in all Anopheles mosquitoes so far analyzed. We found that CRISPR-Cas9-targeted disruption of the intron 4-exon 5 boundary aimed at blocking the formation of functional AgdsxF did not affect male development or fertility, whereas females homozygous for the disrupted allele showed an intersex phenotype and complete sterility. A CRISPR-Cas9 gene drive construct targeting this same sequence spread rapidly in caged mosquitoes, reaching 100% prevalence within 7-11 generations while progressively reducing egg production to the point of total population collapse. Owing to functional constraint of the target sequence, no selection of alleles resistant to the gene drive occurred in these laboratory experiments. Cas9-resistant variants arose in each generation at the target site but did not block the spread of the drive.


Assuntos
Anopheles/genética , Sistemas CRISPR-Cas/genética , Tecnologia de Impulso Genético , Proteínas de Insetos/metabolismo , Mosquitos Vetores/genética , Animais , Proteínas de Ligação a DNA , Éxons/genética , Feminino , Marcação de Genes , Proteínas de Insetos/genética , Íntrons/genética , Masculino , Processos de Determinação Sexual/genética
16.
PLoS Genet ; 13(10): e1007039, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28976972

RESUMO

Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.


Assuntos
Anopheles/genética , Genes Essenciais , Genética Populacional , Seleção Genética , Alelos , Sequência de Aminoácidos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Fertilidade/genética , Frequência do Gene , Biblioteca Gênica , Engenharia Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Insetos Vetores/genética , Malária/prevenção & controle , Masculino , Modelos Genéticos , Controle de Mosquitos/métodos , Mutação , Análise de Sequência de RNA
17.
Genetics ; 207(2): 729-740, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28860320

RESUMO

Y chromosome function, structure and evolution is poorly understood in many species, including the Anopheles genus of mosquitoes-an emerging model system for studying speciation that also represents the major vectors of malaria. While the Anopheline Y had previously been implicated in male mating behavior, recent data from the Anopheles gambiae complex suggests that, apart from the putative primary sex-determiner, no other genes are conserved on the Y. Studying the functional basis of the evolutionary divergence of the Y chromosome in the gambiae complex is complicated by complete F1 male hybrid sterility. Here, we used an F1 × F0 crossing scheme to overcome a severe bottleneck of male hybrid incompatibilities that enabled us to experimentally purify a genetically labeled A. gambiae Y chromosome in an A. arabiensis background. Whole genome sequencing (WGS) confirmed that the A. gambiae Y retained its original sequence content in the A. arabiensis genomic background. In contrast to comparable experiments in Drosophila, we find that the presence of a heterospecific Y chromosome has no significant effect on the expression of A. arabiensis genes, and transcriptional differences can be explained almost exclusively as a direct consequence of transcripts arising from sequence elements present on the A. gambiae Y chromosome itself. We find that Y hybrids show no obvious fertility defects, and no substantial reduction in male competitiveness. Our results demonstrate that, despite their radically different structure, Y chromosomes of these two species of the gambiae complex that diverged an estimated 1.85 MYA function interchangeably, thus indicating that the Y chromosome does not harbor loci contributing to hybrid incompatibility. Therefore, Y chromosome gene flow between members of the gambiae complex is possible even at their current level of divergence. Importantly, this also suggests that malaria control interventions based on sex-distorting Y drive would be transferable, whether intentionally or contingent, between the major malaria vector species.


Assuntos
Anopheles/genética , Cromossomos de Insetos/genética , Evolução Molecular , Hibridização Genética , Mosquitos Vetores/genética , Cromossomo Y/genética , Animais , Fluxo Gênico , Transferência Genética Horizontal , Patrimônio Genético , Aptidão Genética , Infertilidade Masculina/genética , Masculino
18.
Cell Metab ; 25(3): 739-748, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28215844

RESUMO

The etiology of hypertension, the world's biggest killer, remains poorly understood, with treatments targeting the established symptom, not the cause. The development of hypertension involves increased sympathetic nerve activity that, in experimental hypertension, may be driven by excessive respiratory modulation. Using selective viral and cell lesion techniques, we identify adrenergic C1 neurons in the medulla oblongata as critical for respiratory-sympathetic entrainment and the development of experimental hypertension. We also show that a cohort of young, normotensive humans, selected for an exaggerated blood pressure response to exercise and thus increased hypertension risk, has enhanced respiratory-related blood pressure fluctuations. These studies pinpoint a specific neuronal target for ameliorating excessive sympathetic activity during the developmental phase of hypertension and identify a group of pre-hypertensive subjects that would benefit from targeting these cells.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Respiração , Envelhecimento/fisiologia , Animais , Neurônios/fisiologia , Ratos Endogâmicos SHR , Sistema Nervoso Simpático/fisiopatologia , Sinapses/fisiologia
19.
Genetics ; 205(4): 1587-1596, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28159753

RESUMO

There is a need for new interventions against the ongoing burden of vector-borne diseases such as malaria and dengue. One suggestion has been to develop genes encoding effector molecules that block parasite development within the vector, and then use the nuclease-based homing reaction as a form of gene drive to spread those genes through target populations. If the effector gene reduces the fitness of the mosquito and does not contribute to the drive, then loss-of-function mutations in the effector will eventually replace functional copies, but protection may nonetheless persist sufficiently long to provide a public health benefit. Here, we present a quantitative model allowing one to predict the duration of protection as a function of the probabilities of different molecular processes during the homing reaction, various fitness effects, and the efficacy of the effector in blocking transmission. Factors that increase the duration of protection include reducing the frequency of pre-existing resistant alleles, the probability of nonrecombinational DNA repair, the probability of homing-associated loss of the effector, the fitness costs of the nuclease and effector, and the completeness of parasite blocking. For target species that extend over an area much larger than the typical dispersal distance, the duration of protection is expected to be highest at the release site, and decrease away from there, eventually falling to zero, as effector-less drive constructs replace effector-containing ones. We also model an alternative strategy of using the nuclease to target an essential gene, and then linking the effector to a sequence that restores the essential function and is resistant to the nuclease. Depending upon parameter values, this approach can prolong the duration of protection. Our models highlight the key design criteria needed to achieve a desired level of public health benefit.


Assuntos
Enzimas Reparadoras do DNA/genética , Genes de Insetos , Proteínas de Insetos/genética , Malária/transmissão , Modelos Genéticos , Mosquitos Vetores/genética , Animais , Aptidão Genética , Humanos , Malária/prevenção & controle , Mosquitos Vetores/enzimologia , Mutação
20.
Dev Comp Immunol ; 67: 257-265, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27667688

RESUMO

Mosquitoes have a multifaceted innate immune system that is actively engaged in warding off various pathogens, including the protozoan malaria parasite Plasmodium. Various immune signaling pathways and effectors have been shown to mediate a certain degree of defense specificity against different Plasmodium species. A key pattern recognition receptor of the Anopheles gambiae immune system is the fibrinogen domain-containing immunolectin FBN9, which has been shown to be transcriptonally induced by Plasmodium infection, and to mediate defense against both rodent and human malaria parasites and bacteria. Here we have further studied the defense specificity of FBN9 using a transgenic approach, in which FBN9 is overexpressed in the fat body tissue after a blood meal through a vitellogenin promoter. Interestingly, the Vg-FBN9 transgenic mosquitoes showed increased resistance only to the rodent parasite P. berghei, and not to the human parasite P. falciparum, pointing to differences in the mosquito's defense mechanisms against the two parasite species. The Vg-FBN9 transgenic mosquitoes were also more resistant to infection with both Gram-positive and Gram-negative bacteria and showed increased longevity when infected with P. berghei. Our study points to the importance of both experimentally depleting and enriching candidate anti-Plasmodium effectors in functional studies in order to ascertain their suitability for the development of transgenic mosquito-based malaria control strategies.


Assuntos
Anopheles/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Corpo Adiposo/fisiologia , Fibrilinas/metabolismo , Malária/imunologia , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Fertilidade , Fibrilinas/genética , Humanos , Imunidade Inata , Regiões Promotoras Genéticas/genética , Receptores de Reconhecimento de Padrão/genética , Roedores , Especificidade da Espécie , Transgenes/genética , Vitelogeninas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA