Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Psychiatry Res Neuroimaging ; 336: 111692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673711

RESUMO

This article describes the protocol for a randomized, controlled clinical trial of a neurofeedback (NF) intervention for Tourette Syndrome (TS) and chronic tic disorder. The intervention involves using functional magnetic resonance imaging (fMRI) to provide feedback regarding activity in the supplementary motor area: participants practice controlling this brain area while using the feedback as a training signal. The previous version of this NF protocol was tested in a small study (n = 21) training adolescents with TS that yielded clinically promising results. Therefore, we plan a larger trial. Here we describe the background literature that motivated this work, the design of our original neurofeedback study protocol, and adaptations of the research study protocol for the new trial. We focus on those ideas incorporated into our protocol that may be of interest to others designing and running NF studies. For example, we highlight our approach for defining an unrelated brain region to be trained in the control group that is based on identifying a region with low functional connectivity to the target area. Consistent with a desire for transparency and open science, the new protocol is described in detail here prior to conducting the trial.


Assuntos
Neurorretroalimentação , Transtornos de Tique , Tiques , Síndrome de Tourette , Humanos , Adolescente , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/terapia , Tiques/diagnóstico por imagem , Tiques/terapia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Psychiatry Res ; 328: 115458, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37722238

RESUMO

We aim to develop fMRI neurofeedback as a treatment for obsessive compulsive disorder (OCD). In prior work, we found that providing neurofeedback of activity in the anterior prefrontal cortex (aPFC) improved control over contamination anxiety in a subclinical population. Here, we present the results of a randomized, double-blind clinical trial (NCT02206945) testing this intervention in patients with OCD. We recruited patients with primary symptoms in the fear-of-harm/checking or contamination/washing domains. During neurofeedback, they viewed symptom provocative images and attempted to up- and down-regulate the aPFC during different blocks of time. The active group received two sessions of neurofeedback and the control group received yoked sham feedback. The primary outcome measure was the Yale-Brown Obsessive-Compulsive Symptom scale. The secondary outcome was control over aPFC. Thirty-six participants completed feedback training (18 active, 18 control). The active group had a slightly but significantly greater reduction of obsessive-compulsive symptoms after neurofeedback compared to the control group (p<.05) but no significant differences in control over the aPFC. These data demonstrate that neurofeedback targeting the aPFC can reduce symptoms in OCD. Future investigations should seek to optimize the training protocol to yield larger effects and to clarify the mechanism of action.


Assuntos
Neurorretroalimentação , Transtorno Obsessivo-Compulsivo , Humanos , Resultado do Tratamento , Transtorno Obsessivo-Compulsivo/terapia , Transtorno Obsessivo-Compulsivo/diagnóstico , Ansiedade , Córtex Pré-Frontal , Método Duplo-Cego
3.
Transl Psychiatry ; 13(1): 177, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230984

RESUMO

Hyperactivation of amygdala is a neural marker for post-traumatic stress disorder (PTSD) and improvement in control over amygdala activity has been associated with treatment success in PTSD. In this randomized, double-blind clinical trial we evaluated the efficacy of a real-time fMRI neurofeedback intervention designed to train control over amygdala activity following trauma recall. Twenty-five patients with PTSD completed three sessions of neurofeedback training in which they attempted to downregulate the feedback signal after exposure to personalized trauma scripts. For subjects in the active experimental group (N = 14), the feedback signal was from a functionally localized region of their amygdala associated with trauma recall. For subjects in the control group (N = 11), yoked-sham feedback was provided. Changes in control over the amygdala and PTSD symptoms served as the primary and secondary outcome measurements, respectively. We found significantly greater improvements in control over amygdala activity in the active group than in the control group 30-days following the intervention. Both groups showed improvements in symptom scores, however the symptom reduction in the active group was not significantly greater than in the control group. Our finding of greater improvement in amygdala control suggests potential clinical application of neurofeedback in PTSD treatment. Thus, further development of amygdala neurofeedback training in PTSD treatment, including evaluation in larger samples, is warranted.


Assuntos
Neurorretroalimentação , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/terapia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Regulação para Baixo , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia
4.
Magn Reson Med ; 89(4): 1506-1513, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36426774

RESUMO

PURPOSE: MRI studies in human subjects often require multiple scanning sessions/visits. Changes in a subject's head position across sessions result in different alignment between brain tissues and the magnetic field which leads to changes in magnetic susceptibility. These changes can have considerable impacts on acquired signals. Head ALignment Optimization (HALO), a software tool was developed by the authors for active head alignment between sessions. METHODS: HALO provides real-time visual feedback of a subject's current head position relative to the position in a previous session. The tool was evaluated in a pilot sample of seven healthy human subjects. RESULTS: HALO was shown to enable subjects to actively align their head positions to the desired position of their initial sessions. The subjects were able to improve their head alignment significantly using HALO and achieved good alignment with their first session meeting stringent criteria similar to that used for within-run head motion (less than 2 mm translation or 2 degrees rotation in any direction from the desired position). Moreover, we found a negative correlation between the post-alignment rotation and similarity in inter-session BOLD patterns around the air-tissue interface near sinus which further highlighted the impact of tissue-field alignment on BOLD data quality. CONCLUSION: Utilization of HALO in longitudinal studies may help to improve data quality by ensuring the consistency of susceptibility gradients in brain tissues across sessions. HALO has been made publicly available.


Assuntos
Imageamento por Ressonância Magnética , Software , Humanos , Rotação , Estudos Longitudinais
5.
Brain Behav Immun ; 106: 262-269, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058419

RESUMO

Immune-brain interactions influence the pathophysiology of addiction. Lipopolysaccharide (LPS)-induced systemic inflammation produces effects on reward-related brain regions and the dopamine system. We previously showed that LPS amplifies dopamine elevation induced by methylphenidate (MP), compared to placebo (PBO), in eight healthy controls. However, the effects of LPS on the dopamine system of tobacco smokers have not been explored. The goal of Study 1 was to replicate previous findings in an independent cohort of tobacco smokers. The goal of Study 2 was to combine tobacco smokers with the aforementioned eight healthy controls to examine the effect of LPS on dopamine elevation in a heterogenous sample for power and effect size determination. Eight smokers were each scanned with [11C]raclopride positron emission tomography three times-at baseline, after administration of LPS (0.8 ng/kg, intravenously) and MP (40 mg, orally), and after administration of PBO and MP, in a double-blind, randomized order. Dopamine elevation was quantified as change in [11C]raclopride binding potential (ΔBPND) from baseline. A repeated-measures ANOVA was conducted to compare LPS and PBO conditions. Smokers and healthy controls were well-matched for demographics, drug dosing, and scanning parameters. In Study 1, MP-induced striatal dopamine elevation was significantly higher following LPS than PBO (p = 0.025, 18 ± 2.9 % vs 13 ± 2.7 %) for smokers. In Study 2, MP-induced striatal dopamine elevation was also significantly higher under LPS than under PBO (p < 0.001, 18 ± 1.6 % vs 11 ± 1.5 %) in the combined sample. Smoking status did not interact with the effect of condition. This is the first study to translate the phenomenon of amplified dopamine elevation after experimental activation of the immune system to an addicted sample which may have implications for drug reinforcement, seeking, and treatment.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Metilfenidato/farmacologia , Tomografia por Emissão de Pósitrons , Racloprida/metabolismo , Racloprida/farmacologia , Fumantes
6.
Transl Psychiatry ; 12(1): 328, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948535

RESUMO

Obsessive-compulsive symptoms (OCS) are common in school-aged children and predict the development of obsessive compulsive disorder (OCD). White-matter abnormalities have been described in OCD, but the white matter correlates of OCS in the developing brain are unclear. Some correlates of OCS (or a diagnosis of OCD) may reflect correlates of a transdiagnostic or even general psychopathology factor. We examined these questions in a large sample of typically developing youth (N = 1208), using a hierarchical analysis of fixel-based white matter measures in relation to OCS and general psychopathology. General psychopathology was associated with abnormalities in the posterior corpus callosum and forceps major in an age-dependent manner, suggesting altered maturation (specifically, hypermaturation in younger subjects). A unidimensional measure of OCS did not associate with any white-matter abnormalities, but analysis of separate OCS dimensions (derived from factor analysis within this sample) revealed the 'Bad Thoughts' dimension to associate with white-matter abnormalities in dorsal parietal white-matter and descending corticospinal tracts, and the 'Symmetry' dimension to associate with abnormalities in the anterior corpus callosum. Repetition/checking and Symmetry OCS were additionally associated with posterior abnormalities overlapping with the correlates of general psychopathology. Contamination symptoms had no white-matter correlates. Secondary analysis of fractional anisotropy (FA) revealed distinct white-matter abnormalities, suggesting that fixel-based and FA analyses identify distinct features of white matter relevant to psychopathology. These findings suggest that OCS dimensions correlate with dissociable abnormalities in white matter, implicating separable networks. Future studies should examine these white-matter signatures in a longitudinal framework.


Assuntos
Transtorno Obsessivo-Compulsivo , Substância Branca , Adolescente , Anisotropia , Criança , Humanos , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
7.
EJNMMI Phys ; 9(1): 27, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416555

RESUMO

BACKGROUND: There has been an ongoing need to compare and combine the results of new PET imaging studies conducted with [11C]raclopride with older data. This typically means harmonizing data across different scanners. Previous harmonization studies have utilized either phantoms or human subjects, but the use of both phantoms and humans in one harmonization study is not common. The purpose herein was (1) to use phantom images to develop an inter-scanner harmonization technique and (2) to test the harmonization technique in human subjects. METHODS: To develop the harmonization technique (Experiment 1), the Iida brain phantom was filled with F-18 solution and scanned on the two scanners in question (HRRT, HR+, Siemens/CTI). Phantom images were used to determine the optimal isotropic Gaussian filter to harmonize HRRT and HR+ images. To evaluate the harmonization on human images (Experiment 2), inter-scanner variability was calculated using [11C]raclopride scans of 3 human subjects on both the HRRT and HR+ using percent difference (PD) in striatal non-displaceable binding potential (BPND) between HR+ and HRRT (with and without Gaussian smoothing). Finally, (Experiment 3), PDT/RT was calculated for test-retest (T/RT) variability of striatal BPND for 8 human subjects scanned twice on the HR+. RESULTS: Experiment 1 identified the optimal filter as a Gaussian with a 4.5 mm FWHM. Experiment 2 resulted in 13.9% PD for unfiltered HRRT and 3.71% for HRRT filtered with 4.5 mm. Experiment 3 yielded 5.24% PDT/RT for HR+. CONCLUSIONS: The PD results show that the variability of harmonized HRRT is less than the T/RT variability of the HR+. The harmonization technique makes it possible for BPND estimates from the HRRT to be compared to (and/or combined with) those from the HR+ without adding to overall variability. Our approach is applicable to all pairs of scanners still in service.

8.
Neuroimage Clin ; 34: 102980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35247729

RESUMO

BACKGROUND: Parkinson's disease (PD) causes difficulty with maintaining the speed, size, and vigor of movements, especially when they are internally generated. We previously proposed that the insula is important in motivating intentional movement via its connections with the dorsomedial frontal cortex (dmFC). We demonstrated that subjects with PD can increase the right insula-dmFC functional connectivity using fMRI-based neurofeedback (NF) combined with kinesthetic motor imagery (MI). The current study is a randomized clinical trial testing whether NF-guided kinesthetic MI training can improve motor performance and increase task-based and resting-state right insula-dmFC functional connectivity in subjects with PD. METHODS: We assigned nondemented subjects with mild PD (Hoehn & Yahr stage ≤ 3) to the experimental kinesthetic MI with NF (MI-NF, n = 22) and active control visual imagery (VI, n = 22) groups. Only the MI-NF group received NF-guided MI training (10-12 runs). The NF signal was based on the right insula-dmFC functional connectivity strength. All subjects also practiced their respective imagery tasks at home daily for 4 weeks. Post-training changes in 1) task-based and resting-state right insula-dmFC functional connectivity were the primary imaging outcomes, and 2) MDS-UPDRS motor exam and motor function scores were the primary and secondary clinical outcomes, respectively. RESULTS: The MI-NF group was not significantly different from the VI group in any of the primary imaging or clinical outcome measures. The MI-NF group reported subjective improvement in kinesthetic body awareness. There was significant and comparable improvement only in motor function scores in both groups (secondary clinical outcome). This improvement correlated with NF regulation of the right insula-dmFC functional connectivity only in the MI-NF group. Both groups showed specific training effects in whole-brain functional connectivity with distinct neural circuits supporting kinesthetic motor and visual imagery (exploratory imaging outcome). CONCLUSIONS: The functional connectivity-based NF regulation was unsuccessful, however, both kinesthetic MI and VI practice improved motor function in our cohort with mild PD.


Assuntos
Neurorretroalimentação , Doença de Parkinson , Mapeamento Encefálico , Humanos , Imagens, Psicoterapia , Imaginação/fisiologia , Cinestesia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/fisiologia , Doença de Parkinson/diagnóstico por imagem
9.
Soc Cogn Affect Neurosci ; 17(7): 634-644, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850939

RESUMO

Childhood maladaptive aggression is associated with disrupted functional connectivity within amygdala-prefrontal circuitry. In this study, neural correlates of childhood aggression were probed using the intrinsic connectivity distribution, a voxel-wise metric of global resting-state brain connectivity. This sample included 38 children with aggressive behavior (26 boys, 12 girls) ages 8-16 years and 21 healthy controls (14 boys, 6 girls) matched for age and IQ. Functional MRI data were acquired during resting state, and differential patterns of intrinsic functional connectivity were tested in a priori regions of interest implicated in the pathophysiology of aggressive behavior. Next, correlational analyses tested for associations between functional connectivity and severity of aggression measured by the Reactive-Proactive Aggression Questionnaire in children with aggression. Children with aggressive behavior showed increased global connectivity in the bilateral amygdala relative to controls. Greater severity of aggressive behavior was associated with decreasing global connectivity in the dorsal anterior cingulate and ventromedial prefrontal cortex. Follow-up seed analysis revealed that aggression was also positively correlated with left amygdala connectivity with the dorsal anterior cingulate, ventromedial and dorsolateral prefrontal cortical regions. These results highlight the potential role of connectivity of the amygdala and medial prefrontal and anterior cingulate cortices in modulating the severity of aggressive behavior in treatment-seeking children.


Assuntos
Agressão , Tonsila do Cerebelo , Adolescente , Agressão/fisiologia , Tonsila do Cerebelo/fisiologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia
10.
Neuroimage ; 212: 116684, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114151

RESUMO

Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback is a non-invasive, non-pharmacological therapeutic tool that may be useful for training behavior and alleviating clinical symptoms. Although previous work has used rt-fMRI to target brain activity in or functional connectivity between a small number of brain regions, there is growing evidence that symptoms and behavior emerge from interactions between a number of distinct brain areas. Here, we propose a new method for rt-fMRI, connectome-based neurofeedback, in which intermittent feedback is based on the strength of complex functional networks spanning hundreds of regions and thousands of functional connections. We first demonstrate the technical feasibility of calculating whole-brain functional connectivity in real-time and provide resources for implementing connectome-based neurofeedback. We next show that this approach can be used to provide accurate feedback about the strength of a previously defined connectome-based model of sustained attention, the saCPM, during task performance. Although, in our initial pilot sample, neurofeedback based on saCPM strength did not improve performance on out-of-scanner attention tasks, future work characterizing effects of network target, training duration, and amount of feedback on the efficacy of rt-fMRI can inform experimental or clinical trial designs.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Conectoma/métodos , Neurorretroalimentação/métodos , Neurorretroalimentação/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto
12.
Biol Psychiatry ; 87(12): 1063-1070, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31668476

RESUMO

BACKGROUND: Activity in the supplementary motor area (SMA) has been associated with tics in Tourette syndrome (TS). The aim of this study was to test a novel intervention-real-time functional magnetic resonance imaging neurofeedback from the SMA-for reduction of tics in adolescents with TS. METHODS: Twenty-one adolescents with TS were enrolled in a double-blind, randomized, sham-controlled, crossover study involving two sessions of neurofeedback from their SMA. The primary outcome measure of tic severity was the Yale Global Tic Severity Scale administered by an independent evaluator before and after each arm. The secondary outcome was control over the SMA assessed in neuroimaging scans, in which subjects were cued to increase/decrease activity in SMA without receiving feedback. RESULTS: All 21 subjects completed both arms of the study and all assessments. Participants had significantly greater reduction of tics on the Yale Global Tic Severity Scale after real neurofeedback as compared with the sham control (p < .05). Mean Yale Global Tic Severity Scale Total Tic score decreased from 25.2 ± 4.6 at baseline to 19.9 ± 5.7 at end point in the neurofeedback condition and from 24.8 ± 8.1 to 23.3 ± 8.5 in the sham control condition. The 3.8-point difference is clinically meaningful and corresponds to an effect size of 0.59. However, there were no differences in changes on the secondary measure of control over the SMA. CONCLUSIONS: This first randomized controlled trial of real-time functional magnetic resonance imaging neurofeedback in adolescents with TS suggests that this neurofeedback intervention may be helpful for improving tic symptoms. However, no effects were found in terms of change in control over the SMA, the hypothesized mechanism of action.


Assuntos
Neurorretroalimentação , Tiques , Síndrome de Tourette , Adolescente , Estudos Cross-Over , Humanos , Imageamento por Ressonância Magnética , Índice de Gravidade de Doença , Tiques/terapia , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/terapia
13.
Brain ; 142(6): 1827-1841, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135053

RESUMO

With approximately 75% of smokers resuming cigarette smoking after using the Gold Standard Programme for smoking cessation, investigation into novel therapeutic approaches is warranted. Typically, smoking cue reactivity is crucial for smoking behaviour. Here we developed a novel closed-loop, smoking cue reactivity patterns EEG-based neurofeedback protocol and evaluated its therapeutic efficacy on nicotine addiction. During an evoked smoking cue reactivity task participants' brain activity patterns corresponding to smoking cues were obtained with multivariate pattern analysis of all EEG channels data, then during neurofeedback the EEG activity patterns of smoking cue reactivity were continuously deactivated with adaptive closed-loop training. In a double-blind, placebo-controlled, randomized clinical trial, 60 nicotine-dependent participants were assigned to receive two neurofeedback training sessions (∼1 h/session) either from their own brain (n = 30, real-feedback group) or from the brain activity pattern of a matched participant (n = 30, yoked-feedback group). Cigarette craving and craving-related P300 were assessed at pre-neurofeedback and post-neurofeedback. The number of cigarettes smoked per day was assessed at baseline, 1 week, 1 month, and 4 months following the final neurofeedback visit. In the real-feedback group, participants successfully deactivated EEG activity patterns of smoking cue reactivity. The real-feedback group showed significant decrease in cigarette craving and craving-related P300 amplitudes compared with the yoked-feedback group. The rates of cigarettes smoked per day at 1 week, 1 month and 4 months follow-up decreased 30.6%, 38.2%, and 27.4% relative to baseline in the real-feedback group, compared to decreases of 14.0%, 13.7%, and 5.9% in the yoked-feedback group. The neurofeedback effects on craving change and smoking amount at the 4-month follow-up were further predicted by neural markers at pre-neurofeedback. This novel neurofeedback training approach produced significant short-term and long-term effects on cigarette craving and smoking behaviour, suggesting the neurofeedback protocol described herein is a promising brain-based tool for treating addiction.


Assuntos
Comportamento Aditivo/prevenção & controle , Condicionamento Psicológico/efeitos dos fármacos , Nicotina/efeitos adversos , Fumar , Adulto , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Fissura/efeitos dos fármacos , Sinais (Psicologia) , Método Duplo-Cego , Feminino , Humanos , Masculino , Neurorretroalimentação/métodos , Tempo
14.
Schizophr Bull ; 45(2): 415-424, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660081

RESUMO

Schizophrenia is a severe global health problem, with over half of such patients experiencing auditory verbal hallucinations (AVHs). A better understanding of the neural correlates differentiating patients experiencing AVHs from patients not experiencing AVHs and healthy controls may identify targets that lead to better treatment strategies for AVHs. Employing 2 data-driven, voxel-based measure of functional connectivity, we studied 46 patients with schizophrenia or schizoaffective disorder (28 experiencing AVHs and 18 not experiencing AVHs). Twenty healthy controls matched for age, gender, ethnicity, education level, handedness, and estimated verbal intelligence were included for comparison. The intrinsic connectivity distribution (ICD) was used to model each voxel's connectivity to the rest of the brain using a Weibull distribution. To investigate lateralization of connectivity, we used cross-hemisphere ICD, a method that separates the contribution of each hemisphere to interrogate connectivity laterality. Patients with AVHs compared with patients without AVHs exhibited significantly decreased whole-brain connectivity in the medial prefrontal cortex and posterior cingulate cortex, less lateralized connectivity in left putamen, and more lateralized connectivity in left interior frontal gyrus. Correlations with Auditory Hallucination Rating Scale (AHRS) and post hoc seed connectivity analyses revealed significantly altered network connectivity. Using the results from all analyses comparing the patient groups and correlations with AHRS, we identified a potential AVH network, consisting of 25 nodes, showing substantial overlap with the default mode network and language processing networks. This network as a whole, instead of individual nodes, may represent actionable targets for interventions.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Alucinações/fisiopatologia , Rede Nervosa/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Putamen/fisiopatologia , Esquizofrenia/fisiopatologia , Percepção da Fala/fisiologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Alucinações/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Putamen/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
15.
Neuroimage ; 186: 256-265, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423429

RESUMO

fMRI Neurofeedback research employs many different control conditions. Currently, there is no consensus as to which control condition is best, and the answer depends on what aspects of the neurofeedback-training design one is trying to control for. These aspects can range from determining whether participants can learn to control brain activity via neurofeedback to determining whether there are clinically significant effects of the neurofeedback intervention. Lack of consensus over criteria for control conditions has hampered the design and interpretation of studies employing neurofeedback protocols. This paper presents an overview of the most commonly employed control conditions currently used in neurofeedback studies and discusses their advantages and disadvantages. Control conditions covered include no control, treatment-as-usual, bidirectional-regulation control, feedback of an alternative brain signal, sham feedback, and mental-rehearsal control. We conclude that the selection of the control condition(s) should be determined by the specific research goal of the study and best procedures that effectively control for relevant confounding factors.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Grupos Controle , Imageamento por Ressonância Magnética , Neurorretroalimentação/métodos , Humanos , Imaginação , Efeito Placebo
16.
Front Hum Neurosci ; 12: 496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581383

RESUMO

Intentional movement is an internally driven process that requires the integration of motivational and sensory cues with motor preparedness. In addition to the motor cortical-basal ganglia circuits, the limbic circuits are also involved in the integration of these cues. Individuals with Parkinson's disease (PD) have a particular difficulty with internally generating intentional movements and maintaining the speed, size, and vigor of movements. This difficulty improves when they are provided with external cues suggesting that there is a problem with the internal motivation of movement in PD. The prevailing view attributes this difficulty in PD to the dysfunction of motor cortical-basal ganglia circuits. First, we argue that the standard cortical-basal ganglia circuit model of motor dysfunction in PD needs to be expanded to include the insula which is a major hub within the limbic circuits. We propose a neural circuit model highlighting the interaction between the insula and dorsomedial frontal cortex which is involved in generating intentional movements. The insula processes a wide range of sensory signals arising from the body and integrates them with the emotional and motivational context. In doing so, it provides the impetus to the dorsomedial frontal cortex to initiate and sustain movement. Second, we present the results of our proof-of-concept experiment demonstrating that the functional connectivity of the insula-dorsomedial frontal cortex circuit can be enhanced with neurofeedback-guided kinesthetic motor imagery using functional magnetic resonance imaging in subjects with PD. Specifically, we found that the intensity and quality of body sensations evoked during motor imagery and the emotional and motivational context of motor imagery determined the direction (i.e., negative or positive) of the insula-dorsomedial frontal cortex functional connectivity. After 10-12 neurofeedback sessions and "off-line" practice of the successful motor imagery strategies all subjects showed a significant increase in the insula-dorsomedial frontal cortex functional connectivity. Finally, we discuss the implications of these results regarding motor function in patients with PD and propose suggestions for future studies.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30035247

RESUMO

BACKGROUND: Neuroimaging studies have revealed that disturbances in network organization of key brain regions may underlie cognitive and emotional dysfunction in posttraumatic stress disorder (PTSD). Examining both brain structure and function in the same population may further our understanding of network alterations in PTSD. METHODS: We used tensor-based morphometry (TBM) and intrinsic connectivity distribution (ICD) to identify regions of altered volume and functional connectivity in unmedicated individuals with PTSD (n=21) and healthy comparison (HC) participants (n=18). These regions were then used as seeds for follow-up anatomical covariance and functional connectivity analyses. RESULTS: Smaller volume in the cerebellum and weaker structural covariance between the cerebellum seed and middle temporal gyrus were observed in the PTSD group. Individuals with PTSD also exhibited lower whole-brain connectivity in the cerebellum, dorsolateral prefrontal cortex (dlPFC) and medial prefrontal cortex (mPFC). Functional connectivity in the cerebellum and grey matter volume in the dlPFC were negatively correlated with PTSD severity as measured by the DSM-5 PTSD checklist (PCL-5; r= -.0.77, r=-0.79). Finally, seed connectivity revealed weaker connectivity within nodes of the central executive network (right and left dlPFC), and between nodes of the default mode network (mPFC and cerebellum) and the supramarginal gyrus, in the PTSD group. CONCLUSION: We demonstrate structural and functional alterations in PTSD converging on the PFC and cerebellum. Whilst PFC alterations are relatively well established in PTSD, the cerebellum has not generally been considered a key region in PTSD. Our findings add to a growing evidence base implicating cerebellar involvement in the pathophysiology of PTSD.

18.
Neuroimage ; 181: 807-813, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29729393

RESUMO

Neurofeedback - learning to modulate brain function through real-time monitoring of current brain state - is both a powerful method to perturb and probe brain function and an exciting potential clinical tool. For neurofeedback effects to be useful clinically, they must persist. Here we examine the time course of symptom change following neurofeedback in two clinical populations, combining data from two ongoing neurofeedback studies. This analysis reveals a shared pattern of symptom change, in which symptoms continue to improve for weeks after neurofeedback. This time course has several implications for future neurofeedback studies. Most neurofeedback studies are not designed to test an intervention with this temporal pattern of response. We recommend that new studies incorporate regular follow-up of subjects for weeks or months after the intervention to ensure that the time point of greatest effect is sampled. Furthermore, this time course of continuing clinical change has implications for crossover designs, which may attribute long-term, ongoing effects of real neurofeedback to the control intervention that follows. Finally, interleaving neurofeedback sessions with assessments and examining when clinical improvement peaks may not be an appropriate approach to determine the optimal number of sessions for an application.


Assuntos
Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Terapias Mente-Corpo/métodos , Neurorretroalimentação/fisiologia , Transtorno Obsessivo-Compulsivo/terapia , Avaliação de Resultados em Cuidados de Saúde , Reconhecimento Visual de Modelos/fisiologia , Córtex Pré-Frontal/fisiopatologia , Síndrome de Tourette/terapia , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Córtex Pré-Frontal/diagnóstico por imagem , Fatores de Tempo
19.
Psychiatry Res ; 265: 249-255, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29763844

RESUMO

Visual stimuli are often used for obsessive-compulsive (OC) symptom provocation in research studies. We tested the induction of anxiety and OC checking symptoms across different types of checking provocation stimuli in three populations: individuals with obsessive compulsive disorder (OCD), individuals with checking symptoms but without a diagnosis of OCD, and control individuals with neither checking symptoms nor a clinical diagnosis. One set of provocative images depicted objects that are commonly associated with checking anxiety. Another set ('enhanced provocative images') depicted similar objects but also included contextual cues suggesting a specific harmful scenario that could occur. As expected, the enhanced provocative images were more effective at inducing anxiety and OC symptoms than the standard provocative images. Future studies requiring checking symptom provocation should therefore consider incorporating similarly suggestive images. Individuals with clinical OCD reported the greatest provocation in response to these images, followed by those with nonclinical checking, followed by control individuals. Thus, these stimuli are able to provoke OC checking symptoms and anxiety differentially across groups, with the intensity of provocation reflecting diagnostic status. All groups demonstrated a similar qualitative pattern of provocation across images. Finally, in all groups, reported anxiety closely tracked intrusive thoughts and checking urges.


Assuntos
Ansiedade/diagnóstico , Ansiedade/psicologia , Testes Neuropsicológicos , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/psicologia , Estimulação Luminosa/efeitos adversos , Adulto , Ansiedade/etiologia , Comportamento Compulsivo/diagnóstico , Comportamento Compulsivo/etiologia , Comportamento Compulsivo/psicologia , Feminino , Humanos , Masculino , Transtorno Obsessivo-Compulsivo/etiologia , Estimulação Luminosa/métodos , Adulto Jovem
20.
J Am Acad Child Adolesc Psychiatry ; 57(1): 33-40, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301667

RESUMO

OBJECTIVE: One of the common findings in autism spectrum disorder (ASD) is limited selective attention toward social objects, such as faces. Evidence from both human and nonhuman primate studies suggests that selection of objects for processing is guided by the appraisal of object values. We hypothesized that impairments in selective attention in ASD may reflect a disruption of a system supporting learning about object values in the social domain. METHOD: We examined value learning in social (faces) and nonsocial (fractals) domains in preschoolers with ASD (n = 25) and typically developing (TD) controls (n = 28), using a novel value learning task implemented on a gaze-contingent eye-tracking platform consisting of value learning and a selective attention choice test. RESULTS: Children with ASD performed more poorly than TD controls on the social value learning task, but both groups performed similarly on the nonsocial task. Within-group comparisons indicated that value learning in TD children was enhanced on the social compared to the nonsocial task, but no such enhancement was seen in children with ASD. Performance in the social and nonsocial conditions was correlated in the ASD but not in the TD group. CONCLUSION: The study provides support for a domain-specific impairment in value learning for faces in ASD, and suggests that, in ASD, value learning in social and nonsocial domains may rely on a shared mechanism. These findings have implications both for models of selective social attention deficits in autism and for identification of novel treatment targets.


Assuntos
Atenção/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Reconhecimento Facial/fisiologia , Aprendizagem/fisiologia , Pré-Escolar , Movimentos Oculares , Humanos , Masculino , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA