Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Physiol Behav ; 199: 322-332, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508549

RESUMO

Changes in cardiac function that occur with exercise training have been studied in detail, but those accompanying evolved increases in the duration or intensity of physical activity are poorly understood. To address this gap, we studied electrocardiograms (ECGs) of mice from an artificial selection experiment in which four replicate lines are bred for high voluntary wheel running (HR) while four non-selected lines are maintained as controls (C). ECGs were recorded using an ECGenie (Mouse Specifics, Inc.) both before and after six days of wheel access (as used in the standard protocol to select breeders). We hypothesized that HR mice would show innate differences in ECG characteristics and that the response to training would be greater in HR mice relative to C mice because the former run more. After wheel access, in statistical analyses controlling for variation in body mass, all mice had lower heart rates, and mice from HR lines had longer PR intervals than C lines. Also after wheel access, male mice had increased heart rate variability, whereas females had decreased heart rate variability. With body mass as a covariate, six days of wheel access significantly increased ventricle mass in both HR and C males. Within the HR lines, a subset of mice known as mini-muscle individuals have a 50% reduction in hindlimb muscle mass and generally larger internal organs, including the heart ventricles. As compared with normal-muscled individuals, mini-muscle individuals had a longer QRS complex, both before and after wheel access. Some studies in other species of mammals have shown correlations between athletic performance and QRS duration. Correlations between wheel running and either heart rate or QRS duration (before wheel running) among the eight individual lines of the HR selection experiment or among 17 inbred mouse strains taken from the literature were not statistically significant. However, total revolutions and average speed were negatively correlated with PR duration among lines of the HR selection experiment for males, and duration of running was negatively correlated with PR duration among 17 inbred strains for females. We conclude that HR mice have enhanced trainability of cardiac function as compared with C mice (as indicated by their longer PR duration after wheel access), and that the mini-muscle phenotype causes cardiac changes that have been associated with increased athletic performance in previous studies of mammals.


Assuntos
Coração/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Animais , Eletrocardiografia , Feminino , Masculino , Camundongos , Fenótipo , Caracteres Sexuais
2.
Physiol Biochem Zool ; 90(5): 533-545, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28636434

RESUMO

Postural and kinematic aspects of running may have evolved to support high runner (HR) mice to run approximately threefold farther than control mice. Mice from four replicate HR lines selectively bred for high levels of voluntary wheel running show many differences in locomotor behavior and morphology as compared with four nonselected control (C) lines. We hypothesized that HR mice would show stride alterations that have coadapted with locomotor behavior, morphology, and physiology. More specifically, we predicted that HR mice would have stride characteristics that differed from those of C mice in ways that parallel some of the adaptations seen in highly cursorial animals. For example, we predicted that limbs of HR mice would swing closer to the parasagittal plane, resulting in a two-dimensional measurement of narrowed stance width. We also expected that some differences between HR and C mice might be amplified by 6 d of wheel access, as is used to select breeders each generation. We used the DigiGait Imaging System (Mouse Specifics) to capture high-speed videos in ventral view as mice ran on a motorized treadmill across a range of speeds and then to automatically calculate several aspects of strides. Young adults of both sexes were tested both before and after 6 d of wheel access. Stride length, stride frequency, stance width, stance time, brake time, propel time, swing time, duty factor, and paw contact area were analyzed using a nested analysis of covariance, with body mass as a covariate. As expected, body mass and treadmill speed affected nearly every analyzed metric. Six days of wheel access also affected nearly every measure, indicating pervasive training effects, in both HR and C mice. As predicted, stance width was significantly narrower in HR than C mice. Paw contact area and duty factor were significantly greater in minimuscle individuals (subset of HR mice with 50%-reduced hind limb muscle mass) than in normal-muscled HR or C mice. We conclude that stride characteristics of house mice are adaptable in response to both selective breeding and changes in daily locomotor behavior (activity levels) that occur during as few as 6 d. These results have important implications for understanding the evolution and coadaptation of locomotor behavior and performance.


Assuntos
Cruzamento , Marcha/genética , Marcha/fisiologia , Atividade Motora/genética , Atividade Motora/fisiologia , Animais , Comportamento Animal/fisiologia , Camundongos , Corrida
3.
Physiol Rep ; 4(9)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27162260

RESUMO

The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development.


Assuntos
Barorreflexo/fisiologia , Neurônios Colinérgicos/fisiologia , Frequência Cardíaca/fisiologia , Coração/crescimento & desenvolvimento , Coração/inervação , Neurturina/deficiência , Fatores Etários , Animais , Animais Recém-Nascidos , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Mol Ther ; 24(6): 1030-1041, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27039844

RESUMO

Aspartoacylase (AspA) gene mutations cause the pediatric lethal neurodegenerative Canavan disease (CD). There is emerging promise of successful gene therapy for CD using recombinant adeno-associated viruses (rAAVs). Here, we report an intracerebroventricularly delivered AspA gene therapy regime using three serotypes of rAAVs at a 20-fold reduced dose than previously described in AspA(-/-) mice, a bona-fide mouse model of CD. Interestingly, central nervous system (CNS)-restricted therapy prolonged survival over systemic therapy in CD mice but failed to sustain motor functions seen in systemically treated mice. Importantly, we reveal through histological and functional examination of untreated CD mice that AspA deficiency in peripheral tissues causes morphological and functional abnormalities in this heretofore CNS-defined disorder. We demonstrate for the first time that AspA deficiency, possibly through excessive N-acetyl aspartic acid accumulation, elicits both a peripheral and CNS immune response in CD mice. Our data establish a role for peripheral tissues in CD pathology and serve to aid the development of more efficacious and sustained gene therapy for this disease.


Assuntos
Amidoidrolases/genética , Doença de Canavan/terapia , Sistema Nervoso Central/patologia , Terapia Genética/métodos , Animais , Doença de Canavan/genética , Doença de Canavan/patologia , Sistema Nervoso Central/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Humanos , Camundongos , Especificidade de Órgãos , Análise de Sobrevida , Resultado do Tratamento
5.
Neurobiol Dis ; 85: 81-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459112

RESUMO

Absence seizures occur in several types of human epilepsy and result from widespread, synchronous feedback between the cortex and thalamus that produces brief episodes of loss of consciousness. Genetic rodent models have been invaluable for investigating the pathophysiological basis of these seizures. Here, we identify tetratricopeptide-containing Rab8b-interacting protein (TRIP8b) knockout mice as a new model of absence epilepsy, featuring spontaneous spike-wave discharges on electroencephalography (EEG) that are the electrographic hallmark of absence seizures. TRIP8b is an auxiliary subunit of the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which have previously been implicated in the pathogenesis of absence seizures. In contrast to mice lacking the pore-forming HCN channel subunit HCN2, TRIP8b knockout mice exhibited normal cardiac and motor function and a less severe seizure phenotype. Evaluating the circuit that underlies absence seizures, we found that TRIP8b knockout mice had significantly reduced HCN channel expression and function in thalamic-projecting cortical layer 5b neurons and thalamic relay neurons, but preserved function in inhibitory neurons of the reticular thalamic nucleus. Our results expand the known roles of TRIP8b and provide new insight into the region-specific functions of TRIP8b and HCN channels in constraining cortico-thalamo-cortical excitability.


Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Proteínas de Membrana/deficiência , Neurônios/fisiologia , Tálamo/fisiopatologia , Animais , Western Blotting , Modelos Animais de Doenças , Eletrocardiografia , Eletrocorticografia , Eletrodos Implantados , Epilepsia Tipo Ausência/genética , Imuno-Histoquímica , Masculino , Potenciais da Membrana/fisiologia , Proteínas de Membrana/genética , Camundongos Knockout , Atividade Motora/fisiologia , Técnicas de Patch-Clamp , Peroxinas , Teste de Desempenho do Rota-Rod , Deleção de Sequência , Técnicas de Cultura de Tecidos
6.
Elife ; 42015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26705335

RESUMO

A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures.


Assuntos
Encéfalo/patologia , Laminina/genética , Laminina/metabolismo , Transtornos dos Movimentos/patologia , Mutação , Coluna Vertebral/patologia , Animais , Distonia/patologia , Locomoção , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Vias Neurais/patologia , Postura
7.
Sci Rep ; 5: 8886, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25744495

RESUMO

Dietary methionine restriction (MR) in rodents increased lifespan despite higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia, which are symptoms associated with increased risk for cardiovascular disease. We investigated this paradoxical effect of MR on cardiac function using young, old, and apolipoprotein E-deficient (ApoE-KO) mice. Indeed, MR animals exhibited higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia with a molecular pattern consistent with cardiac stress while maintaining the integrity of cardiac structure. Baseline cardiac function, which was measured by non-invasive electrocardiography (ECG), showed that young MR mice had prolonged QRS intervals compared with control-fed (CF) mice, whereas old and ApoE-KO mice showed similar results for both groups. Following ß-adrenergic challenge, responses of MR mice were either similar or attenuated compared with CF mice. Cardiac contractility, which was measured by isolated heart retrograde perfusion, was similar in both groups of old mice. Finally, the MR diet induced secretion of cardioprotective hormones, adiponectin and fibroblast growth factor 21 (FGF21), in MR mice with concomitant alterations in cardiac metabolic molecular signatures. Our findings demonstrate that MR diet does not alter cardiac function in mice despite the presence of hyperhomocysteinemia because of the adaptive responses of increased adiponectin and FGF21 levels.


Assuntos
Adaptação Fisiológica , Sistema Cardiovascular/fisiopatologia , Dieta , Hiper-Homocisteinemia/etiologia , Hiper-Homocisteinemia/fisiopatologia , Metionina , Adiponectina/metabolismo , Agonistas Adrenérgicos beta/administração & dosagem , Agonistas Adrenérgicos beta/farmacologia , Fatores Etários , Animais , Apolipoproteínas E/deficiência , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Suscetibilidade a Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais
8.
J Clin Invest ; 124(3): 1329-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531548

RESUMO

Patients with Marfan syndrome (MFS), a multisystem disorder caused by mutations in the gene encoding the extracellular matrix (ECM) protein fibrillin 1, are unusually vulnerable to stress-induced cardiac dysfunction. The prevailing view is that MFS-associated cardiac dysfunction is the result of aortic and/or valvular disease. Here, we determined that dilated cardiomyopathy (DCM) in fibrillin 1-deficient mice is a primary manifestation resulting from ECM-induced abnormal mechanosignaling by cardiomyocytes. MFS mice displayed spontaneous emergence of an enlarged and dysfunctional heart, altered physical properties of myocardial tissue, and biochemical evidence of chronic mechanical stress, including increased angiotensin II type I receptor (AT1R) signaling and abated focal adhesion kinase (FAK) activity. Partial fibrillin 1 gene inactivation in cardiomyocytes was sufficient to precipitate DCM in otherwise phenotypically normal mice. Consistent with abnormal mechanosignaling, normal cardiac size and function were restored in MFS mice treated with an AT1R antagonist and in MFS mice lacking AT1R or ß-arrestin 2, but not in MFS mice treated with an angiotensin-converting enzyme inhibitor or lacking angiotensinogen. Conversely, DCM associated with abnormal AT1R and FAK signaling was the sole abnormality in mice that were haploinsufficient for both fibrillin 1 and ß1 integrin. Collectively, these findings implicate fibrillin 1 in the physiological adaptation of cardiac muscle to elevated workload.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Síndrome de Marfan/metabolismo , Mecanotransdução Celular , Adulto , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Criança , Estudos Transversais , Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Quinase 1 de Adesão Focal/metabolismo , Humanos , Losartan/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Síndrome de Marfan/complicações , Síndrome de Marfan/patologia , Síndrome de Marfan/fisiopatologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Tamanho do Órgão , Receptor Tipo 1 de Angiotensina/metabolismo
9.
PLoS One ; 8(3): e59032, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516593

RESUMO

The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.


Assuntos
Marcha/genética , Triptofano Hidroxilase/deficiência , Animais , Eletrocardiografia , Feminino , Marcha/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serotonina/metabolismo , Triptofano Hidroxilase/genética
10.
Brain Behav ; 3(4): 335-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24381807

RESUMO

Charcot first described amyotrophic lateral sclerosis (ALS) in 1869; however, its causes remain largely unknown and effective, long-term treatment strategies are not available. The first mouse model of ALS was developed after the identification of mutations in the superoxide dismutase 1 (SOD1) gene in 1993, and accordingly most of our knowledge of the etiology and pathogenesis of the disease comes from studies carried out using this animal model. Although numerous preclinical trials have been conducted in the mutant SOD1 mouse models, the results have been disappointing because they did not positively translate to clinical trials. One explanation may be that current understanding of when and where pathogenesis begins is insufficient to accurately guide preclinical trials. Further characterization of these early events may provide insight into disease onset, help in the discovery of presymptomatic diagnostic disease markers, and identify novel therapeutic targets. Here, we describe the rationale, approach, and methods for our extensive analysis of early changes that included an ultrastructural examination of central and peripheral components of the neuromuscular system in the SOD1(G93A) mouse and correlated these alterations with early muscle denervation, motor dysfunction, and motoneuron death. We also provide a discussion of published work to review what is known regarding early pathology in the SOD1 mouse model of ALS. The significance of this work is that we have examined early pathology simultaneously in both the spinal cord and peripheral neuromuscular system, and the results are presented in the companion paper (Part II, Results and Discussion). Our results provide evidence as to why a thorough characterization of animal models throughout the life span is critical for a strong foundation to design preclinical trials that may produce meaningful results.

11.
Brain Behav ; 3(4): 431-57, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24381813

RESUMO

Pathological events are well characterized in amyotrophic lateral sclerosis (ALS) mouse models, but review of the literature fails to identify a specific initiating event that precipitates disease pathology. There is now growing consensus in the field that axon and synapses are first cellular sites of degeneration, but controversy exists over whether axon and synapse loss is initiated autonomously at those sites or by pathology in the cell body, in nonneuronal cells or even in nonmotoneurons (MNs). Previous studies have identified pathological events in the mutant superoxide dismutase 1 (SOD1) models involving spinal cord, peripheral axons, neuromuscular junctions (NMJs), or muscle; however, few studies have systematically examined pathogenesis at multiple sites in the same study. We have performed ultrastructural examination of both central and peripheral components of the neuromuscular system in the SOD1(G93A) mouse model of ALS. Twenty percent of MNs undergo degeneration by P60, but NMJ innervation in fast fatigable muscles is reduced by 40% by P30. Gait alterations and muscle weakness were also found at P30. There was no change in axonal transport prior to initial NMJ denervation. Mitochondrial morphological changes are observed at P7 and become more prominent with disease progression. At P30 there was a significant decrease in excitatory axo-dendritic and axo-somatic synapses with an increase in C-type axo-somatic synapses. Our study examined early pathology in both peripheral and central neuromuscular system. The muscle denervation is associated with functional motor deficits and begins during the first postnatal month in SOD1(G93A) mice. Physiological dysfunction and pathology in the mitochondria of synapses and MN soma and dendrites occur, and disease onset in these animals begins more than 2 months earlier than originally thought. This information may be valuable for designing preclinical trials that are more likely to impact disease onset and progression.

12.
Front Pharmacol ; 3: 80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629245

RESUMO

Aberrant autonomic signaling is being increasingly recognized as an important symptom in neuromuscular disorders. The δ-sarcoglycan-deficient BIO TO-2 hamster is recognized as a good model for studying mechanistic pathways and sequelae in muscular dystrophy and heart failure, including autonomic nervous system (ANS) dysfunction. Recent studies using the TO-2 hamster model have provided promising preclinical results demonstrating the efficacy of gene therapy to treat skeletal muscle weakness and heart failure. Methods to accelerate preclinical testing of gene therapy and new drugs for neuromuscular diseases are urgently needed. The purpose of this investigation was to demonstrate a rapid non-invasive screen for characterizing the ANS imbalance in dystrophic TO-2 hamsters. Electrocardiograms were recorded non-invasively in conscious ∼9-month old TO-2 hamsters (n = 10) and non-myopathic F1B control hamsters (n = 10). Heart rate was higher in TO-2 hamsters than controls (453 ± 12 bpm vs. 311 ± 25 bpm, P < 0.01). Time domain heart rate variability, an index of parasympathetic tone, was lower in TO-2 hamsters (12.2 ± 3.7 bpm vs. 38.2 ± 6.8, P < 0.05), as was the coefficient of variance of the RR interval (2.8 ± 0.9% vs. 16.2 ± 3.4%, P < 0.05) compared to control hamsters. Power spectral analysis demonstrated reduced high frequency and low frequency contributions, indicating autonomic imbalance with increased sympathetic tone and decreased parasympathetic tone in dystrophic TO-2 hamsters. Similar observations in newborn hamsters indicate autonomic nervous dysfunction may occur quite early in life in neuromuscular diseases. Our findings of autonomic abnormalities in newborn hamsters with a mutation in the δ-sarcoglycan gene suggest approaches to correct modulation of the heart rate as prevention or therapy for muscular dystrophies.

13.
J Biomed Biotechnol ; 2011: 235354, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21318074

RESUMO

The delta-sarcoglycan-deficient hamster is an excellent model to study muscular dystrophy. Gait disturbances, important clinically, have not been described in this animal model. We applied ventral plane videography (DigiGait) to analyze gait in BIO TO-2 dystrophic and BIO F1B control hamsters walking on a transparent treadmill belt. Stride length was ∼13% shorter (P < .05) in TO-2 hamsters at 9 months of age compared to F1B hamsters. Hindlimb propulsion duration, an indicator of muscle strength, was shorter in 9-month-old TO-2 (247 ± 8 ms) compared to F1B hamsters (272 ± 11 ms; P < .05). Braking duration, reflecting generation of ground reaction forces, was delayed in 9-month-old TO-2 (147 ± 6 ms) compared to F1B hamsters (126 ± 8 ms; P < .05). Hindpaw eversion, evidence of muscle weakness, was greater in 9-month-old TO-2 than in F1B hamsters (17.7 ± 1.2° versus 8.7 ± 1.6°; P < .05). Incline and decline walking aggravated gait disturbances in TO-2 hamsters at 3 months of age. Several gait deficits were apparent in TO-2 hamsters at 1 month of age. Quantitative gait analysis demonstrates that dystrophic TO-2 hamsters recapitulate functional aspects of human muscular dystrophy. Early detection of gait abnormalities in a convenient animal model may accelerate the development of therapies for muscular dystrophy.


Assuntos
Marcha/fisiologia , Distrofia Muscular Animal/fisiopatologia , Animais , Cricetinae , Masculino , Fenótipo , Sarcoglicanas/deficiência , Caminhada/fisiologia
14.
BMC Physiol ; 10: 16, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20735846

RESUMO

BACKGROUND: Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility of many mutant neonates. Here, we use a non-invasive system to characterize development of the heart rate and electrocardiogram throughout the growth of conscious neonate FVB/N mice. RESULTS: We examine ECG waveforms as early as two days after birth. At this point males and females demonstrate comparable heart rates that are 50% lower than adult mice. Neonatal mice exhibit very low heart rate variability. Within 12 days of birth PR, QRS and QTc interval durations are near adult values while heart rate continues to increase until weaning. Upon weaning FVB/N females quickly develop slower heart rates than males, though PR intervals are comparable between sexes until a later age. This suggests separate developmental events may contribute to these gender differences in electrocardiography. CONCLUSIONS: We provide insight with a new level of detail to the natural course of heart rate establishment in neonate mice. ECG can now be conveniently and repeatedly used in neonatal mice. This should serve to be of broad utility, facilitating further investigations into development of a diverse group of diseases and therapeutics in preclinical mouse studies.


Assuntos
Sistema Nervoso Autônomo/crescimento & desenvolvimento , Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Modelos Logísticos , Masculino , Camundongos , Distribuição Aleatória , Fatores Sexuais
15.
J Mot Behav ; 42(1): 1-4, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19906638

RESUMO

Guillot, Asress, Richardson, Glass, and Miller (2008) recently reported that treadmill gait analysis does not detect motor deficits in animal models of Parkinson's disease (PD) or amyotrophic lateral sclerosis (ALS). The authors studied aged C57BL/6J mice administered the neurotoxin 1-methyl 4-phenyl 1-, 2-, 3-, 6-tetrahydropyridine to model PD, and a small number of presymptomatic superoxide dismutase 1 G93A mice to study ALS. Several key issues merit discussion to put their observations in perspective. An increasing number of research groups are applying treadmill gait analysis to their rodent models of numerous movement disorders. The conclusions Guillot et al. drew undermine the potential importance of the paradigm of treadmill gait analysis for understanding and treating PD and ALS.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Modelos Animais de Doenças , Teste de Esforço , Marcha , Doença de Parkinson Secundária/fisiopatologia , Superóxido Dismutase/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Alanina , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Animais , Glicina , Camundongos , Camundongos Endogâmicos C57BL , Neurotoxinas , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/diagnóstico , Superóxido Dismutase-1
16.
Am J Physiol Heart Circ Physiol ; 297(6): H1974-83, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19801490

RESUMO

Neuregulin-1 (NRG1) is a potential therapeutic agent for the treatment of doxorubicin (Dox)-induced heart failure. NRG1, however, activates the erbB2 receptor, which is frequently overexpressed in breast cancers. It is, therefore, important to understand how NRG1, via erbB2, protects the heart against Dox cardiotoxicity. Here, we studied NRG1-erbB2 signaling in Dox-treated mice hearts and in isolated neonatal rat ventricular myocytes (NRVM). Male C57BL/6 mice were treated with recombinant NRG1 before and daily after a single dose of Dox. Cardiac function was determined by catheterization. Two-week survival was analyzed by the Kaplan-Meier method. Cardiac troponins [cardiac troponin I (cTnI) and cardiac troponin T (cTnT)] and phosphorylated Akt protein levels were determined in mice hearts and in NRVM by Western blot analysis. Activation of caspases and ubiquitinylation of troponins were determined in NRVM by caspase assay and immunoprecipitation. NRG1 significantly improved survival and cardiac function in Dox-treated mice. NRG1 reduced the decrease in cTnI, cTnT, and cardiac troponin C (cTnC) and maintained Akt phosphorylation in Dox-treated mice hearts. NRG1 reduced the decrease in cTnI and cTnT mRNA and proteins in Dox-treated NRVM. Inhibition of erbB2, phosphoinositide 3-kinase (PI3K), Akt, and mTOR blocked the protective effects of NRG1 on cTnI and cTnT in NRVM. NRG1 significantly reduced Dox-induced caspase activation, which degraded troponins, in NRVM. NRG1 reduced Dox-induced proteasome degradation of cTnI. NRG1 attenuates Dox-induced decrease in cardiac troponins by increasing transcription and translation and by inhibiting caspase activation and proteasome degradation of troponin proteins. NRG1 maintains cardiac troponins by the erbB2-PI3K pathway, which may lessen Dox-induced cardiac dysfunction.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Cardiopatias/prevenção & controle , Miocárdio/metabolismo , Neuregulina-1/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Troponina I/metabolismo , Troponina T/metabolismo , Animais , Animais Recém-Nascidos , Antibióticos Antineoplásicos , Biomarcadores/sangue , Caspases/metabolismo , Células Cultivadas , Creatina Quinase/sangue , Modelos Animais de Doenças , Doxorrubicina , Glicoproteínas/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Injeções Subcutâneas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor ErbB-2 , Proteínas Recombinantes/administração & dosagem , Serina-Treonina Quinases TOR , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Troponina I/sangue , Troponina I/genética , Troponina T/sangue , Troponina T/genética , Ubiquitinação , Regulação para Cima , Função Ventricular Esquerda/efeitos dos fármacos
17.
Eur J Pharmacol ; 592(1-3): 123-7, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18627770

RESUMO

Clozapine, an atypical antipsychotic, is very effective in the treatment of resistant schizophrenia. However, cardiotoxicity of clozapine, particularly in young patients, has raised concerns about its safety. Increased catecholamines have been postulated to trigger an inflammatory response resulting in myocarditis, dilated cardiomyopathy, and death, although this has not yet been thoroughly studied. Here, we used the mouse to study whether clozapine administration could cause adverse myocarditis associated with an increase in catecholamines. Male Balb/C mice, age ~6 weeks, were administered 5, 10 or 25 mg/kg clozapine daily for 7 and 14 days; one group was administered 25 mg/kg clozapine plus 2 mg/kg propranolol for 14 days. Saline-treated mice served as controls. Heart sections were stained with hematoxylin and eosin for histopathological examination. Plasma catecholamines were measured with HPLC. Myocardial TNF-alpha concentrations were determined by ELISA. Histopathology of clozapine-treated mice showed a significant dose-related increase in myocardial inflammation that correlated with plasma catecholamine levels and release of TNF-alpha. Propranolol significantly attenuated these effects. A hypercatecholaminergic state induced by clozapine could explain the occurrence of myocarditis in some patients. Our data suggest that a beta-adrenergic blocking agent may be effective in reducing the incidence and severity of clozapine-induced myocarditis.


Assuntos
Antipsicóticos/toxicidade , Catecolaminas/fisiologia , Clozapina/toxicidade , Miocardite/induzido quimicamente , Miocardite/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Propranolol/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
18.
Arthritis Res Ther ; 9(6): R123, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18036238

RESUMO

Murine collagen-induced arthritis (CIA) has become a valuable animal model for elucidating pathogenic mechanisms and evaluating therapeutic effects for rheumatoid arthritis. Recent advances in digital imaging and computer technology have enabled gait analysis to develop into a powerful tool for objectively detecting functional deficits in human and animal models. The present study explored the use of non-invasive video-capture gait analysis in the evaluation of a murine CIA model. CIA was induced in 45 female DBA/1LacJ mice (8 to 10 weeks old) by immunization with lyophilized bovine articular type II collagen. Gait parameters were determined by ventral plane videography and were correlated to traditional arthritis clinical scores. Our results showed that increases in clinical scores that measure the severity of CIA corresponded to changes in multiple gait parameters that reflect both morphologic (increases in paw area) and functional (increase in stride frequency, decrease in stride length, hind-limb paw placement angle, as well as stride, stance, and braking times) deficits. Our work indicated that the non-invasive video-capture device may be used as a simple and objective data acquisition system for quantifying gait disturbances in CIA mice for the investigation of mechanisms and the evaluation of therapeutic agents.


Assuntos
Artrite Experimental/fisiopatologia , Marcha/fisiologia , Coxeadura Animal/fisiopatologia , Animais , Artrite Experimental/complicações , Artrite Reumatoide/fisiopatologia , Fenômenos Biomecânicos , Feminino , Humanos , Coxeadura Animal/etiologia , Camundongos , Camundongos Endogâmicos DBA , Fatores de Tempo , Gravação em Vídeo
19.
Am J Physiol Heart Circ Physiol ; 291(4): H1653-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16699073

RESUMO

Embryonic stem cells (ESCs) overexpressing the vascular endothelial growth factor (VEGF) improve cardiac function in mouse models of myocardial ischemia and infarction by mechanisms that are poorly understood. Here we studied the effects of VEGF on cardiomyocyte differentiation of mouse ESCs in vitro. We used flow cytometry to determine the expression of alpha-myosin heavy chain (alpha-MHC), cardiac troponin I (cTn-I), and Nkx2.5 in differentiated ESCs. VEGF (20 ng/ml) significantly enhanced alpha-MHC, cTn-I, and Nkx2.5 expression in differentiated ESCs. Western blot analysis confirmed these findings. We found that VEGF receptor FMS-like tyrosine kinase-1 (Flt-1) and fetal liver kinase-1 (Flk-1) expression increased during ESC differentiation. Antibodies against Flk-1 totally blocked and against Flt-1 partially blocked VEGF-induced NKx2.5-positive-stained cells. The ERK inhibitor PD-098059 abolished VEGF-induced cardiomyocyte differentiation of ESCs. Our results suggest that VEGF promotes cardiomyocyte differentiation predominantly by ERK-mediated Flk-1 activation and, to a lesser extent, by Flt-1 activation. These findings may be of significance for stem cell and growth factor therapies to regenerate failing cardiomyocytes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transplante de Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina I/genética , Troponina I/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
20.
J Neuroeng Rehabil ; 2: 20, 2005 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16042805

RESUMO

BACKGROUND: Gait is impaired in patients with Parkinson's disease (PD) and Huntington's disease (HD), but gait dynamics in mouse models of PD and HD have not been described. Here we quantified temporal and spatial indices of gait dynamics in a mouse model of PD and a mouse model of HD. METHODS: Gait indices were obtained in C57BL/6J mice treated with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day for 3 days) for PD, the mitochondrial toxin 3-nitropropionic acid (3NP, 75 mg/kg cumulative dose) for HD, or saline. We applied ventral plane videography to generate digital paw prints from which indices of gait and gait variability were determined. Mice walked on a transparent treadmill belt at a speed of 34 cm/s after treatments. RESULTS: Stride length was significantly shorter in MPTP-treated mice (6.6 +/- 0.1 cm vs. 7.1 +/- 0.1 cm, P < 0.05) and stride frequency was significantly increased (5.4 +/- 0.1 Hz vs. 5.0 +/- 0.1 Hz, P < 0.05) after 3 administrations of MPTP, compared to saline-treated mice. The inability of some mice treated with 3NP to exhibit coordinated gait was due to hind limb failure while forelimb gait dynamics remained intact. Stride-to-stride variability was significantly increased in MPTP-treated and 3NP-treated mice compared to saline-treated mice. To determine if gait disturbances due to MPTP and 3NP, drugs affecting the basal ganglia, were comparable to gait disturbances associated with motor neuron diseases, we also studied gait dynamics in a mouse model of amyotrophic lateral sclerosis (ALS). Gait variability was not increased in the SOD1 G93A transgenic model of ALS compared to wild-type control mice. CONCLUSION: The distinct characteristics of gait and gait variability in the MPTP model of Parkinson's disease and the 3NP model of Huntington's disease may reflect impairment of specific neural pathways involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA