Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 12(1): 7995, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568726

RESUMO

Little is known about glandular proteins secreted from the skin- and blood-feeding ectoparasite salmon louse (Lepeophtheirus salmonis). The labial gland has ducts extending into the oral cavity of the lice, and the present study aimed to identify novel genes expressed by this gland type and to investigate their role in modulation of host parameters at the lice feeding site. Five genes associated with labial gland function were identified and named Lepeophteirus salmonis labial gland protein (LsLGP) 1-4 and 1 like (LsLGP1L). All LsLGPs were predicted to be small charged secreted proteins not encoding any known protein domains. Functional studies revealed that LsLGP1 and/or LsLGP1L regulated the expression of other labial gland genes. Immune dampening functions were indicated for LsLGP2 and 3. Whereas LsLGP2 was expressed throughout the parasitic life cycle and found to dampen inflammatory cytokines, LsLGP3 displayed an increased expression in mobile stages and appeared to dampen adaptive immune responses. Expression of LsLGP4 coincided with moulting to the mobile pre-adult I stage where hematophagous feeding is initiated, and synthetic LsLGP4 decreased the clotting time of Atlantic salmon plasma. Results from the present study confirm that the salmon louse secretes immune modulating and anti-coagulative proteins with a potential application in new immune based anti-salmon louse treatments.


Assuntos
Copépodes , Doenças dos Peixes , Ftirápteros , Salmo salar , Animais , Copépodes/fisiologia , Doenças dos Peixes/genética , Imunidade , Salmo salar/genética
2.
J Morphol ; 277(12): 1616-1630, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645198

RESUMO

Exocrine glands of blood-feeding parasitic copepods are believed to be important in host immune response modulation and inhibition of host blood coagulation, but also in the production of substances for integument lubrication and antifouling. In this study, we aimed to characterize the distribution of different types of salmon louse (Lepeophtheirus salmonis) exocrine glands and their site of secretion. The developmental appearance of each gland type was mapped and genes specifically expressed by glands were identified. Three types of tegumental (teg 1-3) glands and one labial gland type were found. The first glands to appear during development were teg 1 and teg 2 glands. They have ducts extending both dorsally and ventrally suggested to be important in lubricating the integument. Teg 1 glands were found to express two astacin metallopeptidases and a gene with fibronectin II domains, while teg 2 glands express a heme peroxidase. The labial glands were first identified in planktonic copepodids, with reservoirs that allows for storage of glandular products. The last gland type to appear during development was named teg 3 and was not seen before the preadult I stage when the lice become more virulent. Teg 3 glands have ducts ending ventrally at the host-parasite contact area, and may secrete substances important for the salmon lice virulence. Salmon lice teg 3 and labial glands are thus likely to be especially important in the host-parasite interaction. Proteins secreted from the salmon louse glands to its salmonid host skin or blood represents a potential interface where the host immune system can meet and elicit effective responses to sea lice antigens. The present study thus represents a fundamental basis for further functional studies and identification of possible vaccine candidates. J. Morphol. 277:1616-1630, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Copépodes/anatomia & histologia , Copépodes/embriologia , Glândulas Exócrinas/embriologia , Glândulas Exócrinas/metabolismo , Animais , Glândulas Exócrinas/anatomia & histologia , Feminino , Interações Hospedeiro-Parasita , Hibridização In Situ , Pele/metabolismo
3.
PLoS One ; 8(9): e73539, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069203

RESUMO

Each year the salmon louse (Lepeophtheirussalmonis Krøyer, 1838) causes multi-million dollar commercial losses to the salmon farming industry world-wide, and strict lice control regimes have been put in place to reduce the release of salmon louse larvae from aquaculture facilities into the environment. For half a century, the Lepeophtheirus life cycle has been regarded as the only copepod life cycle including 8 post-nauplius instars as confirmed in four different species, including L. salmonis. Here we prove that the accepted life cycle of the salmon louse is wrong. By observations of chalimus larvae molting in incubators and by morphometric cluster analysis, we show that there are only two chalimus instars: chalimus 1 (comprising the former chalimus I and II stages which are not separated by a molt) and chalimus 2 (the former chalimus III and IV stages which are not separated by a molt). Consequently the salmon louse life cycle has only six post-nauplius instars, as in other genera of caligid sea lice and copepods in general. These findings are of fundamental importance in experimental studies as well as for interpretation of salmon louse biology and for control and management of this economically important parasite.


Assuntos
Copépodes/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia
4.
Parasitol Int ; 58(4): 451-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19732850

RESUMO

The salmon louse (Lepeophtheirus salmonis (Krøyer 1837)) is an ectoparasitic copepod which represents a major pathogen of wild and farmed salmonid fishes in the marine environment. In order to facilitate research on this ecologically and economically important parasite, a hatchery and culturing system permitting the closure of the life-cycle of L. salmonis in the laboratory was developed. Here, the hatchery system, breeding practices, and selected louse strains that have been maintained in culture in the period 2002-2009 are presented. The hatchery and culture protocol gave rise to predictable hatching of larvae and infections of host fish, permitting the cultivation of specific strains of L. salmonis for 22 generations. Both in- and out-bred lice and mutant colour strains have been established, and some of these strains were characterised by microsatellite DNA markers confirming their pedigree. No evidence of inbreeding depression, fitness or morphological changes was observed in any of the strains cultured. It is suggested that the culturing system, and the strains produced represent a significant resource for future research on this parasite.


Assuntos
Animais de Laboratório , Copépodes , Doenças dos Peixes/parasitologia , Salmão/parasitologia , Animais , Animais de Laboratório/classificação , Animais de Laboratório/genética , Animais de Laboratório/crescimento & desenvolvimento , Copépodes/classificação , Copépodes/genética , Copépodes/crescimento & desenvolvimento , Copépodes/patogenicidade , Genótipo , Repetições de Microssatélites , Mutação , Parasitologia/instrumentação , Parasitologia/métodos
5.
Int J Parasitol ; 39(13): 1407-15, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19445947

RESUMO

The salmon louse (Lepeophtheirus salmonis) is an important pathogen in salmon aquaculture and a serious threat to wild populations of salmon. Knowledge of its basic biological processes such as reproduction is crucial for the control of this parasite and can facilitate development of a vaccine. Here, a novel yolk-associated protein, LsYAP, was characterised. Quantitative PCR and in situ analysis demonstrated that transcription of LsYAP takes place in the subcuticular tissue of adult females in the reproductive phase. LsYAP protein is transported and deposited in the developing eggs in the genital segment, where further processing takes place. The sequence characteristics, histological localisation and transcript regulation suggest that LsYAP is a yolk-associated protein. In addition, the use of RNA interference is, to our knowledge, demonstrated for the first time in a copepod. Treatment of adult females with double-stranded RNA led to lethality and deformations of offspring only. This result confirms that the LsYAP protein is produced in adult females but is utilised by the offspring.


Assuntos
Copépodes/genética , Proteínas do Ovo/genética , Doenças dos Peixes/parasitologia , Salmão/parasitologia , Animais , Aquicultura , Copépodes/crescimento & desenvolvimento , Feminino , Doenças dos Peixes/genética , Interações Hospedeiro-Parasita/genética , Estágios do Ciclo de Vida , Análise em Microsséries , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Interferência de RNA
6.
Comp Biochem Physiol B Biochem Mol Biol ; 146(2): 289-98, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17215156

RESUMO

Clip domain containing serine peptidases (CSPs) include one or more N-terminal clip domain(s) and a C-terminal serine peptidase domain that shares traits with both chymotrypsin and trypsin. CSPs are found in arthropods and are involved in embryonic patterning, immune responses and blood clotting. Among crustaceans only one CSP, which activates prophenoloxidase in crayfish, have previously been reported. We here present LsCSP1, the first CSP found in copepods. LsCSP1 is expressed in the subcuticular tissue and the transcription appears to be upregulated during development. In conjunction with previous studies of CSPs, this study suggests that LsCSP1 may play a role in the immune responses of L. salmonis. Phylogenetic and structural analyses indicate that the CSPs and catalytically inactive CSP homologs (CSPHs) constitute a monophyletic lineage.


Assuntos
Copépodes/genética , Perfilação da Expressão Gênica , Peptídeo Hidrolases/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Domínio Catalítico/genética , Copépodes/enzimologia , Feminino , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/classificação , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA