Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 408, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755583

RESUMO

BACKGROUND: Grazing exclusion is an efficient practice to restore degraded grassland ecosystems by eliminating external disturbances and improving ecosystems' self-healing capacities, which affects the ecological processes of soil-plant systems. Grassland degradation levels play a critical role in regulating these ecological processes. However, the effects of vegetation and soil states at different degradation stages on grassland ecosystem restoration are not fully understood. To better understand this, desert steppe at three levels of degradation (light, moderate, and heavy degradation) was fenced for 6 years in Inner Mongolia, China. Community characteristics were investigated, and nutrient concentrations of the soil (0-10 cm depth) and dominant plants were measured. RESULTS: We found that grazing exclusion increased shoots' carbon (C) concentrations, C/N, and C/P, but significantly decreased shoots' nitrogen (N) and phosphorus (P) concentrations for Stipa breviflora and Cleistogenes songorica. Interestingly, there were no significant differences in nutrient concentrations of these two species among the three degraded desert steppes after grazing exclusion. After grazing exclusion, annual accumulation rates of aboveground C, N, and P pools in the heavily degraded area were the highest, but the aboveground nutrient pools were the lowest among the three degraded grasslands. Similarly, the annual recovery rates of community height, cover, and aboveground biomass in the heavily degraded desert steppe were the highest among the three degraded steppes after grazing exclusion. These results indicate that grazing exclusion is more effective for vegetation restoration in the heavily degraded desert steppe. The soil total carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus concentrations in the moderately and heavily degraded desert steppes were significantly decreased after six years of grazing exclusion, whereas these were no changes in the lightly degraded desert steppe. Structural equation model analysis showed that the grassland degradation level mainly altered the community aboveground biomass and aboveground nutrient pool, driving the decrease in soil nutrient concentrations and accelerating nutrient transfer from soil to plant community, especially in the heavily degraded grassland. CONCLUSIONS: Our study emphasizes the importance of grassland degradation level in ecosystem restoration and provides theoretical guidance for scientific formulation of containment policies.


Assuntos
Pradaria , Herbivoria , China , Clima Desértico , Solo/química , Fósforo/metabolismo , Fósforo/análise , Conservação dos Recursos Naturais , Nitrogênio/metabolismo , Poaceae , Carbono/metabolismo , Ecossistema , Nutrientes/metabolismo , Recuperação e Remediação Ambiental/métodos , Animais
2.
J Ethnopharmacol ; 216: 47-56, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29366768

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polysaccharides and small molecules commonly co-exist in decoctions of traditional Chinese medicines (TCMs). Our previous study outlined that ginseng polysaccharides (GP) could interact with co-existing ginsenosides to produce synergistic effect in an over-fatigue and acute cold stress model via gut microbiota involved mechanisms. AIM OF THE STUDY: This study aimed to verify the interactions by examining the impact of GP on oral pharmacokinetics of ginsenoside Rb1 (Rb1), the dominant protopanoxadiol (PPD)-type ginsenoside in Ginseng, on a dextran sulphate sodium (DSS) induced experimental colitis model which was characterized by gut dysbiosis, and to delineate the underlying mechanisms in vitro. MATERIALS AND METHODS: Rats received drinking water (normal group), 5% DSS (UC group), or 5% DSS plus daily oral administration of GP (GP group) for 7 days and fecal samples were collected on day -3, 0 and 6. On day 7 all animals received an oral dosage of Rb1 and blood samples were withdrawn for pharmacokinetic study. The in vitro metabolism study of Rb1 in gut microbiota from normal and UC rats and the transport study of Rb1 across Caco-2 cell monolayer were carried out in presence/absence of GP. Rb1 and its bacterial metabolites ginsenoside Rd (Rd), ginsenoside F2 (F2), Compound K (CK) and PPD were determined using LC-MS/MS. Total and target bacteria in fecal samples were determined by using 16S rRNA-based RT-PCR. ß-Glucosidase activity was determined by measuring 4-nitrophenol formed from 4-nitrophenyl-ß-D-glucopyranoside hydrolysis. RESULTS: DSS induction did not alter AUC0-t and Cmax of Rb1, which, however, were doubled together with elevated AUC0-t of the metabolites, in particular Rd and CK, in GP group. GP influenced the microbial composition and showed a prebiotic-like effect. Accordingly, GP treatment could partially restore the ß-glucosidase activity which was reduced by DSS induction. The presence of GP resulted in quicker microbial metabolism of Rb1 and higher Rd formation in first 8 h of incubation, while the impact on F2 and CK formation/conversion became obvious after 8 h. More interestingly, GP slightly stimulated Caco-2 cell growth and facilitated Rb1 transport across the Caco-2 monolayer in both directions, increasing the Papp of Rb1 from 10-7 cm/s to 10-6 cm/s. CONCLUSIONS: GP alleviated DSS-induced colitis-like symptoms and enhanced the systemic exposure of Rb1 through enhancing microbial deglycosylation and intestinal epithelial absorption of Rb1. These findings further demonstrated the important role of gut microbiota in the multifaceted action of polysaccharides in the holistic actions of traditional decoction of TCMs.


Assuntos
Anti-Inflamatórios/administração & dosagem , Bactérias/efeitos dos fármacos , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Panax , Polissacarídeos/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacocinética , Bactérias/metabolismo , Biotransformação , Células CACO-2 , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Citocinas/sangue , Sulfato de Dextrana , Modelos Animais de Doenças , Interações Medicamentosas , Disbiose , Ginsenosídeos/isolamento & purificação , Ginsenosídeos/farmacocinética , Glicosilação , Humanos , Mediadores da Inflamação/sangue , Masculino , Panax/química , Fitoterapia , Plantas Medicinais , Polissacarídeos/isolamento & purificação , Ratos Sprague-Dawley
3.
Drug Metab Dispos ; 46(3): 292-302, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311138

RESUMO

UDP-glucuronosyltransferase 1A1 (UGT1A1) constitutes an important part of intestinal epithelial barrier and catalyzes glucuronidation of many endogenous compounds and drugs. Downregulation of UGT1A1 in inflammation has been reported, whereas the association with gut dysbiosis is poorly defined. This study verified the involvement of gut microbiota in intestinal UGT1A1 regulation using dextran sulfate sodium (DSS)-induced rat colitis model plus fecal microbiota transplantation (FMT). Generally, both DSS induction and colitis-to-normal FMT suppressed mRNA and protein expressions of UGT1A1 and nuclear xenobiotic receptors (NRs) in colon, but enhanced mRNA and decreased protein of rat UGT1A1/rat NRs in small intestine. Normal-to-colitis FMT alleviated DSS-induced changes. Bacterial outer membrane vesicles (OMVs) from colitis rats and rats receiving colitis feces reduced both mRNA and protein of human UGT1A1 (hUGT1A1)/human NRs (hNRs) in Caco-2 cells. Interestingly, using deoxycholate to reduce lipopolysaccharide, normal OMVs upregulated hUGT1A1/hNRs, whereas colitis OMVs decreased, indicating the involvement of other OMVs components in UGT1A1 regulation. The 10- to 50-kDa fractions from both normal and colitis OMVs downregulated hUGT1A1, human PXR, and human PPAR-γ, whereas >50-kDa fractions from normal rats upregulated hUGT1A1 and human CAR. Additionally, the conditioned medium from OMVs-stimulated rat primary macrophages also reduced hUGT1A1/hNRs expression. Both Toll-like receptor (TLR)2 and TLR4 were activated by DSS, colitis-to-normal FMT, and the opposite, whereas only TLR4 was increased in OMVs-treated cells. TLR4 small interfering RNA blocked hUGT1A1/hNRs downregulation and phosphatidylinositol 3-kinase/Akt, extracellular signal-regulated kinase, and nuclear factor κB phosphorylation evoked by bacterial OMVs. Taken together, this study demonstrated that gut microbiota regulate intestinal UGT1A1 partially through secreting OMVs, which interact with intestinal epithelial cells directly or via activating macrophage.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Colite/metabolismo , Sulfato de Dextrana/metabolismo , Glucuronosiltransferase/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células CACO-2 , Colo/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA