Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
BMC Genomics ; 25(1): 333, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570739

RESUMO

BACKGROUND: The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. RESULT: This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks' bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. CONCLUSION: In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.


Assuntos
Patos , Transcriptoma , Animais , Patos/genética , Patos/metabolismo , Transdução de Sinais , Citocinas/genética , Perfilação da Expressão Gênica
2.
Front Vet Sci ; 11: 1122904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348107

RESUMO

To comprehensively provide insight into goose fatty liver formation, we performed an integrative analysis of the liver transcriptome, lipidome, and amino acid metabolome, as well as peripheral adipose tissue transcriptome analysis using samples collected from the overfed geese and normally fed geese. Transcriptome analysis showed that liver metabolism pathways were mainly enriched in glucolipid metabolism, amino acid metabolism, inflammation response, and cell cycle; peripheral adipose tissue and the liver cooperatively regulated liver lipid accumulation during overfeeding. Liver lipidome patterns obviously changed after overfeeding, and 157 different lipids were yielded. In the liver amino acid metabolome, the level of Lys increased after overfeeding. In summary, this is the first study describing goose fatty liver formation from an integrative analysis of transcriptome, lipidome, and amino acid metabolome, which will provide a whole new dimension to understanding the mechanism of goose fatty liver formation.

3.
Poult Sci ; 103(3): 103466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277893

RESUMO

This study analyzed the formation of goose fatty liver due to endoplasmic reticulum stress (ERS) caused by 3 types of sugar. Transcriptome analysis was performed for liver tissues from geese fed a traditional diet (maize flour), geese overfed with traditional diet, and geese overfed with diet supplemented with glucose, fructose, or sucrose. Correlation analysis of the liver tissue transcriptomes showed that differentially expressed genes (DEGs) involved in ERS were significantly negatively correlated with DEGs involved in inflammation response in the sucrose overfeeding group, and significantly positively correlated with the DEGs involved in lipid metabolism in fructose overfeeding group. Goose primary hepatocytes were isolated in vitro and then treated with glucose or fructose. Some were also treated with ERS inhibitor 4-phenylbutyric acid (4-PBA). In the hepatocytes, mRNA expression of X-Box Binding Protein 1 (XBP1), activating transcription factor 6 (AFT6) and glucose-regulated protein 78 (GRP78) genes increased in the two sugar groups (glucose and fructose), but were suppressed by adding 4-PBA. The mRNA expression data, protein kinase contents, and triglyceride (TG) and very low-density lipoprotein (VLDL) concentrations all suggest that ERS regulates lipid deposition induced by glucose and fructose via elevating lipid synthesis, inhibiting fatty acid oxidation, and decreasing lipid transportation. In conclusion, glucose, or fructose cause ERS and then ERS causes lipid deposition in goose primary hepatocytes. Three types of sugar cause lipid accumulation and then lipid accumulation prevents ERS during goose fatty liver formation, which suggests a potential mechanism protects goose livers from ERS. The different sugars may induce lipid deposition in different ways.


Assuntos
Butilaminas , Fígado Gorduroso , Gansos , Animais , Gansos/metabolismo , Açúcares , Galinhas/genética , Fígado Gorduroso/etiologia , Fígado Gorduroso/veterinária , Glucose/metabolismo , Triglicerídeos/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático , Sacarose
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003565

RESUMO

In poultry, prolactin (PRL) plays a key role in the regulation of incubation behavior, hormone secretion, and reproductive activities. However, previous in vitro studies have focused on the actions of PRL in ovarian follicles of poultry, relying on the use of exogenous or recombinant PRL, and the true role of PRL in regulating ovarian granulosa cell (GC) functions in poultry awaits a further investigation using endogenous native PRL. Therefore, in this study, we first isolated and purified recombinant goose PRL protein (rPRL) and native goose PRL protein (nPRL) using Ni-affinity chromatography and rabbit anti-rPRL antibodies-filled immunoaffinity chromatography, respectively. Then, we analyzed and compared the effects of rPRL and nPRL at different concentrations (0, 3, 30, or 300 ng/mL) on the proliferation and apoptosis of both GCs isolated from goose ovarian pre-hierarchical follicles (phGCs) and from hierarchical follicles (hGCs). Our results show that rPRL at lower concentrations increased the viability and proliferation of both phGCs and hGCs, while it exerted anti-apoptotic effects in phGCs by upregulating the expression of Bcl-2. On the other hand, nPRL increased the apoptosis of phGCs in a concentration-dependent manner by upregulating the expressions of caspase-3 and Fas and downregulating the expressions of Bcl-2 and Becn-1. In conclusion, this study not only obtained a highly pure nPRL for the first time, but also suggested a dual role of PRL in regulating the proliferation and apoptosis of goose GCs, depending on its concentration and the stage of follicle development. The data presented here can be helpful in purifying native proteins of poultry and enabling a better understanding of the roles of PRL during the ovarian follicle development in poultry.


Assuntos
Gansos , Prolactina , Feminino , Animais , Coelhos , Prolactina/farmacologia , Prolactina/metabolismo , Gansos/metabolismo , Células da Granulosa/metabolismo , Aves Domésticas/metabolismo , Proliferação de Células , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Poult Sci ; 102(10): 102961, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604023

RESUMO

Skeletal characteristics are important to the growth and development of poultry. In feeding management, constant free feeding (FF) of poultry may lead to imbalance between bone development and weight gain. Feed restriction (FR), to a certain extent, is one way to solve this problem. However, the effect of feed restriction on poultry bone development needs further elucidation at the molecular level. Therefore, in the present study, we investigated the effects of different levels of feed restriction (60% FR, 70% FR, 80% FR, and FF) on the sternum development of ducks at 7 and 8 wk old. In the seventh wk, with increasing feed restriction, the values of traits including body weight, breast muscle weight, sternal weight, keel length, and calcified keel length decreased. However, in the eighth wk, the sternum weight and keel length of ducks treated with 60% FR were unexpectedly higher than those of FF individuals, indicative of catch-up growth. Then, we conducted RNA-seq and metabolomic analysis on sterna from 7- and 8-wk-old FF and 60% FR ducks. The results identified multiple differentially expressed genes (DEGs) associated with sternum development that were influenced by feed restriction. Among them, we found that the mRNA expression levels of the chondroitin sulfate synthase 3 (CHSY3) and annexin A2 (ANXA2) which are involved in glycosaminoglycan biosynthesis and bone mineralization, had smaller changes over time under FR treatment than under FF treatment, implying that the FR treatment to a certain extent prevented the premature calcification and prolonged the development time of duck sternum. In addition, the metabolomic and integrative analyses revealed that several antiaging-related metabolites and genes were associated with sternal catch-up growth. Pyrimidine metabolism was identified as the most significant pathway in which most differential metabolites (DMs) between FF and 60% FR were enriched. The results from integrative analysis revealed that the content and expression of 4-aminobutyric acid (GABA) and its related genes showed relatively higher activity in the 60% FR group than in the FF group. The present study identifies multiple biomarkers associated with duck sternum development that are influenced by feed restriction and suggests the potential mechanism of feed restriction-associated duck sternal catch-up growth.


Assuntos
Patos , Transcriptoma , Humanos , Animais , Patos/fisiologia , Galinhas/genética , Calcificação Fisiológica , Esterno , Ração Animal/análise
6.
BMC Genomics ; 24(1): 285, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237371

RESUMO

BACKGROUND: The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT: In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION: In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.


Assuntos
Patos , Estudo de Associação Genômica Ampla , Humanos , Adulto , Animais , Patos/genética , Locos de Características Quantitativas , Genótipo , Peso Corporal/genética , Polimorfismo de Nucleotídeo Único
7.
Poult Sci ; 102(5): 102606, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940654

RESUMO

Oxidative stress is the major culprits responsible for ovarian dysfunction by damaging granulosa cells (GCs). Ferritin heavy chain (FHC) may participate in the regulation of ovarian function by mediating GCs apoptosis. However, the specific regulatory function of FHC in follicular GCs remains unclear. Here, 3-nitropropionic acid (3-NPA) was utilized to establish an oxidative stress model of follicular GCs of Sichuan white geese. To explore the regulatory effects of FHC on oxidative stress and apoptosis of primary GCs in geese by interfering or overexpressing FHC gene. After transfection of siRNA-FHC to GCs for 60 h, the expressions of FHC gene and protein decreased significantly (P < 0.05). After FHC overexpression for 72 h, the expressions of FHC mRNA and protein upregulated considerably (P < 0.05). The activity of GCs was impaired after interfering with FHC and 3-NPA coincubated (P < 0.05). When overexpression of FHC combined with 3-NPA treatment, the activity of GCs was remarkably enhanced (P < 0.05). After interference FHC and 3-NPA treatment, NF-κB and NRF2 gene expression decreased (P < 0.05), the intracellular reactive oxygen species (ROS) level increased greatly (P < 0.05), BCL-2 expression reduced, BAX/BCL-2 ratio intensified (P < 0.05), the mitochondrial membrane potential decreased notably (P < 0.05), and the apoptosis rate of GCs aggravated (P < 0.05). While overexpression of FHC combined with 3-NPA treatment could promote BCL-2 protein expression and reduce BAX/BCL-2 ratio, indicating that FHC regulated the mitochondrial membrane potential and apoptosis of GCs by mediating the expression of BCL-2. Taken together, our research manifested that FHC alleviated the inhibitory effect of 3-NPA on the activity of GCs. FHC knockdown could suppress the expression of NRF2 and NF-κB genes, reduce BCL-2 expression and augment BAX/BCL-2 ratio, contributing to the accumulation of ROS and jeopardizing mitochondrial membrane potential, as well as exacerbating GCs apoptosis.


Assuntos
Apoferritinas , Gansos , Feminino , Animais , Gansos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoferritinas/genética , Apoferritinas/metabolismo , Apoferritinas/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Galinhas/metabolismo , Estresse Oxidativo , Apoptose , Células da Granulosa , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
8.
Poult Sci ; 102(3): 102428, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36586388

RESUMO

Our previous study described the mechanism of goose fatty liver formation from cell culture and transcriptome. However, how lipidome of goose liver response to overfeeding is unclear. In this study, we used the same batch of geese (control group and corn flour overfeeding group) to explore the lipidome changes and underlying metabolic mechanisms of goose fatty liver formation. Liquid chromatography-mass spectrometry (LC-MS) was provided to lipidome detection. Liver lipidomics profiles analysis was performed by principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), different lipids were identified and annotated, and the enriched metabolic pathways were showed. The results of PCA, PLS-DA, and OPLS-DA displayed a clear separation and discrimination between control group and corn flour overfeeding group. Two hundred and fifty-one different lipids were yielded, which were involved in triglyceride (TG), diglyceride (DG), phosphatidic acids (PA), phosphatidylinositols (PI), phosphatidylethanolamines (PE), phosphatidylcholines (PC), lyso-phosphatidylcholines (LPC), monogalactosylmonoacylglycerol (MGMG), sphingolipids (SM), ceramides (Cer), and hexaglycosylceramides (Hex1Cer). Different lipids were enriched in glycerophospholipid metabolism, glycerolipid metabolism, phosphatidylinositol signaling system, inositol phosphate metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and sphingolipid metabolism. In conclusion, this is the first report describing the goose fatty liver formation from lipidomics, this study might provide some insights into the underlying glucolipid metabolism disorders in the process of fatty liver formation.


Assuntos
Fígado Gorduroso , Gansos , Animais , Gansos/metabolismo , Lipidômica , Galinhas/metabolismo , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Triglicerídeos/metabolismo , Fosfatidilcolinas
9.
Poult Sci ; 102(1): 102243, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334470

RESUMO

The feather is an important epidermal appendage, plays an important role in the life activities of avian specie, and has important economic value. Revealing the molecular regulation mechanism of feather growth has a significant meaning in studying adaptive evolution, physiology, and mating of avian species and also provides a theoretical reference for poultry breeding. In this study, the genome-wide association analysis (GWAS) of 358 ducks was based on primary feather length phenotypic data (28-60 d), length growth rates (LGRs), and maturity scores (60 d) to explore the genetic basis affecting feather growth and maturation. The results showed that, among the primary feather 1 to 5 in ducks, the mean LGR of primary feather 2 was the fastest, with the longest length. The primary feathers in males grew and matured slightly faster than in females. The mean maturity scores of primary feather 10∼7 were higher than primary feather 1 to 3 in ducks. GWAS further showed 116 SNPs associated with feather length traits. In addition, 2 candidate regions (Chr1: 127,407,230-127,524,879 bp and Chr21: 182,061,707-183,616,298 bp) were associated with LGR, which contain total 13 candidate genes (The extremely significant SNPs were mainly located in 2 genes: Chr1: REPS2 and Chr21: PTPRT). Four candidate regions (Chr1: 29,113,036-28,675,018 bp, Chr2: 18,253,612-149,111,290 bp, Chr15: 6,489,774 to 12,138,221 bp and Chr21: 6,578,021-8,472,904 bp) were associated with feather maturity, which contain total 24 candidate genes (The extremely significant SNPs were mainly located in 4 genes: Chr1: IMMP2L, DOCK4 and DDX10, Chr2: LDLRAD4). In conclusion, sex factors influence feather growth and maturity, and the genetic basis of the growth /maturity trait between different feathers is similar. REPS2, PTPRT genes, and IMMP2L, DOCK4, DDX10, and LDLRAD4 are important candidate genes that influence feather growth and maturity, respectively.


Assuntos
Patos , Plumas , Feminino , Masculino , Animais , Patos/genética , Genótipo , Estudo de Associação Genômica Ampla/veterinária , Galinhas/genética
10.
Poult Sci ; 101(11): 102149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209604

RESUMO

Previous research in our lab showed that 10% glucose, 10% fructose, and 10% sucrose can induce lipid deposition in goose fatty liver formation process more efficiently. However, whether the overfeeding diet supplement with sugar can affect the meat quality is unclear. The aim of this research was to estimate the meat quality of geese overfed with overfeeding diet adding with different types of sugar. The results indicated there were no significant differences in the diameter of muscle fiber, the muscle fiber density, pH0, pH24, the meat color, the cooking loss, the drip loss, the shear force and the dry matter in breast muscle and thigh muscle between corn flour groups and three sugars groups (P > 0.05). The crude fat content of breast muscle in fructose group was significantly higher than that in sucrose group (P < 0.05); the inosinic acid content of leg muscle in fructose group was significantly higher than that in the sucrose group (P < 0.05); the ratios of essential amino acids to total amino acids (EAA/TAA) in the breast muscle of maize flour group, fructose group, sucrose group and glucose group were 42%, 35%, 32% or 34%;57%, 64%, 64%, and 62%, respectively; the ratios of essential amino acids to total amino acids in leg muscle of maize flour group, fructose group, sucrose group and glucose group were 31%, 33%, 35%, and 34%, respectively. The contents of C16:1 and C18:1 n-9c in breast muscle in fructose group were significantly higher than that in sucrose group (P < 0.05). Compared with maize flour group, the contents of C18:0 and C20:0 were lower in leg muscle of sugar group (P < 0.05). Compared with the maize flour group, the activities of hydrogen peroxide (H2O2) and glutathione peroxidase (GSH-PX) in breast muscle were higher than those of sucrose group (P < 0.05), the total antioxidant capacity (T-AOC) levels in breast muscle was higher than that of fructose group and sucrose group (P < 0.05). Cluster analysis and principal component analysis (PCA) showed that there was no difference in meat quality between maize flour and sugar group. In conclusion, the overfeeding with maize flour supplement with 10% sugar had no evident influence on the meat quality.


Assuntos
Peróxido de Hidrogênio , Açúcares , Animais , Galinhas , Carne/análise , Gansos/fisiologia , Frutose , Glucose , Aminoácidos/análise , Aminoácidos Essenciais , Sacarose
11.
Food Res Int ; 161: 111859, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192983

RESUMO

Poultry products are an essential animal source of protein for humans. Many factors could destroy the balance of the poultry production chain and cause an overstock of products, which need to be stored in the frozen storage warehouse for a long time. The long-term frozen storage may affect the quality of meat products. In this study, the changes of small molecular substances were revealed in duck meat during long-term storage using non-targeted metabolomics. The results showed that compared with fresh meat, even if the meat is stored under frozen storage conditions, the number of differential metabolites of frozen storage meat continues to increase with the prolongation of storage time, indicating that the meat composition has changed significantly with the storage time increased. With the increase in storage time, the nitrogen-containing small molecular compounds in duck meat increased (carnosine and anserine, aspartic acid, and tyrosine, 1H-indole-3-acetamide, 2-Hydroxyphenethylamine, 2-Naphylamine, allocystathionine, and O-phosphoethanolamine), the nucleotides decomposition process strengthened (IMP and AMP, GMP and UMP), and the content of organic acid increased (5-hydroxy indole acetic acid, 5-hydroxypentanoic acid and phenylacetate, taurine) and carbohydrate (1-O-sinapoyl-beta-d-glucose, 4-O-beta-d-glucopyranosyl-d-mannose, and alpha-d-glucose). These small molecular substances can be used as biomarkers to detect long-term stored duck meat deterioration. KEGG enrichment analysis showed that protein catabolism, nucleotide catabolism, fat decomposition and oxidation, and carbohydrate decomposition were the main metabolic processes of meat deterioration during the long-term storage of duck meat. In addition, Non-target metabolome technology is a powerful tool to reveal the meat deterioration process during long-term storage systematically. This study provided a reference for optimizing domestic poultry meat storage methods and ensuring food safety.


Assuntos
2-Hidroxifenetilamina , Carnosina , Animais , Humanos , 2-Hidroxifenetilamina/metabolismo , Monofosfato de Adenosina/metabolismo , Anserina/metabolismo , Ácido Aspártico/metabolismo , Carboidratos , Carnosina/metabolismo , Patos/metabolismo , Glucose/metabolismo , Carne/análise , Nitrogênio/metabolismo , Fenilacetatos/metabolismo , Taurina/metabolismo , Tirosina/metabolismo , Uridina Monofosfato/metabolismo
12.
Poult Sci ; 101(6): 101819, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35490498

RESUMO

The light intensity can affect the production performance of animals. The retina and pineal gland, closely linked, are directly photosensitive organs. This study evaluated the effect of light intensity on duck growth and investigated the effects of varying light intensities on retina and pineal gland transcriptome changes. The increase of light intensity will significantly decrease production performance, such as body weight, eviscerated weight, breast muscle weight, percentage of abdominal fat, etc. The RNA-seq revealed 967 and 201 differentially expressed genes (DEGs) in the retina and pineal gland under different light intensities, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in the retina showed the DEGs were enriched in ECM-receptor interaction, Focal adhesion, Cell adhesion molecules (CAMs), Cytokine-cytokine receptor interaction, Melanogenesis, etc. Meanwhile, the DEGs in the pineal gland were mainly enriched in pathways associated with the mTOR signaling pathway, melanin production pathway, etc. Our results indicated that different light intensities might affect the function of the retina and pineal gland, including the melanin production of the retina and the secretion of melatonin in the pineal gland. Our study can provide a theoretical basis for the molecular mechanism of the effects of different light intensities on the retina and pineal gland.


Assuntos
Glândula Pineal , Animais , Galinhas , Patos , Melaninas/metabolismo , Glândula Pineal/metabolismo , Retina/metabolismo , Transcriptoma
13.
BMC Microbiol ; 22(1): 76, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296244

RESUMO

BACKGROUND: Rearing systems can affect livestock production directly, but whether they have effects on intestinal growth states and ceca microorganisms in ducks is largely unclear. The current study used Nonghua ducks to estimate the effects of rearing systems on the intestines by evaluating differences in intestinal growth indices and cecal microorganisms between ducks in the floor-rearing system (FRS) and net-rearing system (NRS). RESULTS: The values of relative weight (RW), relative length (RL) and RW/RL of the duodenum, jejunum, ileum and ceca in the FRS were significantly higher than those in the NRS during weeks 4, 8 and 13 (p < 0.05). A total of 157 genera were identified from ducks under the two systems, and the dominant microorganisms in both treatments were Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria at the phylum level. The distribution of microorganisms in the ceca of the two treatments showed significant separation during the three time periods, and the value of the Simpson index in the FRS was significantly higher than that in the NRS at 13 weeks (p < 0.05). Five differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 4, seven differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 8, and four differential microorganisms and two differential metabolic pathways were found in the ceca at week 13. CONCLUSIONS: The rearing system influences duck intestinal development and microorganisms. The FRS group had higher intestinal RL, RW and RW/RL and obviously separated ceca microorganisms compared to those of the NRS group. The differential metabolic pathways of cecal microorganisms decreased with increasing age, and the abundance of translation pathways was higher in the NRS group at week 13, while cofactor and vitamin metabolism were more abundant in the FRS group.


Assuntos
Ceco , Patos , Animais , Bactérias , Ceco/microbiologia , Patos/microbiologia , Íleo/microbiologia , Intestinos
14.
Front Cell Dev Biol ; 10: 745129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198553

RESUMO

Birds can be classified into altricial and precocial species. The hatchlings of altricial birds cannot stand, whereas precocial birds can walk and run soon after hatching. It might be owing to the development of the hindlimb bones in the embryo stage, but the molecular regulatory basis underlying the divergence is unclear. To address this issue, we chose the altricial pigeon and the precocial Japanese quail as model animals. The data of tibia weight rate, embryonic skeletal staining, and tibia tissues paraffin section during the embryonic stage showed that the Japanese quail and pigeon have similar skeletal development patterns, but the former had a faster calcification rate. We utilized the comparative transcriptome approach to screen the genes and pathways related to this heterochronism. We separately analyzed the gene expression of tibia tissues of quail and pigeon at two consecutive time points from an inability to stand to be able to stand. There were 2910 differentially expressed genes (DEGs) of quail, and 1635 DEGs of pigeon, respectively. A total of 409 DEGs in common in the quail and pigeon. On the other hand, we compared the gene expression profiles of pigeons and quails at four time points, and screened out eight pairs of expression profiles with similar expression trends but delayed expression in pigeons. By screening the common genes in each pair of expression profiles, we obtained a gene set consisting of 152 genes. A total of 79 genes were shared by the 409 DEGs and the 152 genes. Gene Ontology analysis of these common genes showed that 21 genes including the COL gene family (COL11A1, COL9A3, COL9A1), IHH, MSX2, SFRP1, ATP6V1B1, SRGN, CTHRC1, NOG, and GDF5 involved in the process of endochondral ossification. These genes were the candidate genes for the difference of tibial development between pigeon and quail. This is the first known study on the embryo skeletal staining in pigeon. It provides some new insights for studying skeletal development mechanisms and locomotor ability of altricial and precocial bird species.

15.
J Sci Food Agric ; 102(11): 4647-4656, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35174889

RESUMO

BACKGROUND: Eggs are essential food sources as they provide low cost and high nutritional content of animal protein. The preservation period is one of the apparent factors affecting egg quality. Previous studies based on traditional detection techniques demonstrated that storage period would significantly influence egg weight, eggshell weight, albumen height, haugh unit (HU) and albumen viscosity. Herein, we employed non-targeted metabolome technology to reveal the comprehensive changes in metabolite composition in duck eggs under the impacts of storage period. RESULTS: The results showed that the primary metabolites in the yolk of duck eggs are amino acids, carbohydrates and lipids. In contrast, the primary metabolites in the albumen are amino acids, benzene and indoles. We screened 43 and 16 different metabolites, respectively, in the albumen and yolk of duck eggs with different preservation periods. In addition, kyoto encyclopedia of genes and genomes (KEGG) enrichment was performed, and the results showed that various nutrients were degraded in the egg after preservation, thus affecting the quality of duck eggs. These nutrients included amino acids, fatty acids, nucleotides, sugars and vitamins; meanwhile, ammonia, biogenic amines and some flavor substances were produced, affecting the quality of the eggs. CONCLUSION: Ourfindings can contribute to a holistic understanding of metabolite composition changes in duck eggs during deterioration in storage. © 2022 Society of Chemical Industry.


Assuntos
Patos , Ovos , Albuminas , Aminoácidos/análise , Animais , Casca de Ovo , Gema de Ovo/química , Ácidos Graxos/análise
16.
Poult Sci ; 101(4): 101729, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35172237

RESUMO

Early research in our lab indicated that the effect of glucose, fructose and sucrose on the levels of triacylglycerol, and inflammatory factor was significantly different, and it is speculated that the regulatory mechanism of lipid deposition by different type of sugar in the liver is different. In order to explore lipid deposition difference mediated by different types of sugar (glucose, fructose, and sucrose) in goose fatty liver formation, this experiment was performed from cell culture, overfeeding experiment, and transcriptome analysis at 3 levels. Cell culture experiment results indicated that the levels of intracellular triglyceride, total cholesterol, and lipid content of fructose and sucrose treatment were significantly higher than those of glucose treatment (P < 0.05). In slaughter performance, the liver weight, the ratio of liver weight to body weight, feed conversion ratio (liver weight/feed consumption) were better in sucrose overfeeding group (P < 0.05). In addition, the liver of the sucrose overfeeding group contained a lot of unsaturated fatty acids, especially (n-3) polyunsaturated fatty acids (P < 0.05). Transcriptome analysis shown that the peroxisome proliferators-activated receptor (PPAR) signaling pathway is highly enriched in the fructose and sucrose overfeeding groups; cell cycle, and DNA replication pathways were highly enriched in the glucose overfeeding group. In conclusion, due to the decrease of lipids outward transportation and the anti-inflammation of unsaturated fatty acids, fructose, and sucrose have better ability to induce steatosis in goose fatty liver formation.


Assuntos
Fígado Gorduroso , Gansos , Animais , Galinhas/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/veterinária , Frutose , Gansos/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Sacarose/farmacologia , Açúcares , Triglicerídeos/metabolismo
17.
Mol Biol Rep ; 49(4): 3187-3196, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35124793

RESUMO

BACKGROUND: Bones and muscles originated together from the mesoderm during embryogenesis, and they can influence each other through mechanical stimulations and chemical signals. The sclerostin (SOST) is secreted from mature osteocytes. Here, we used a bird model to illustrate the potential roles of SOST on duck myoblasts to verify the hypothesis that SOST might play functions in coordinating the development of bones and muscles. METHODS AND RESULTS: Firstly, a recombinant adenovirus vector carrying duck SOST was constructed. Then, the adenovirus-mediated duck SOST was transfected into duck myoblasts. The results revealed by CCK-8 showed that the cell proliferation of myoblasts was inhibited after 12 h, 36 h, and 48 h treatment by transfection of SOST. The labeling rates of EdU positive cells in the Ad-duSOST group were significantly lower than the Ad-NC group (P < 0.05). However, the flow cytometry showed that the cells' G0/G1 phase number was not significantly different. Furthermore, the immunofluorescence results showed that the formation of myotubes was inhibited. Subsequent transcriptome revealed that, under the ectopic expression of SOST, the genes related to Cytokine-cytokine receptor interaction, muscle development (regulation of action cytoskeleton, Wnt signaling pathway), and intercellular regulation were changed. Six of the top 20 DEGs were related to morphogenesis. CONCLUSIONS: Our studies demonstrated that the SOST played critical roles in myoblasts differentiation by mediating the crosstalk among several pathways and transcription factors related to cell differentiation. Our data provided cellular evidence supporting the combined functions of SOST in coordinating bone and muscle co-development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Patos , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenoviridae/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Patos/genética , Desenvolvimento Muscular/genética , Via de Sinalização Wnt
18.
BMC Genomics ; 23(1): 122, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148676

RESUMO

BACKGROUND: Mammalian sex chromosomes provide dosage compensation, but avian lack a global mechanism of dose compensation. Herein, we employed nanopore sequencing to investigate the genetic basis of gene expression and gene dosage effects in avian Z chromosomes at the posttranscriptional level. RESULTS: In this study, the gonad and head skin of female and male duck samples (n = 4) were collected at 16 weeks of age for Oxford nanopore sequencing. Our results revealed a dosage effect and local regulation of duck Z chromosome gene expression. Additionally, AS and APA achieve tissue-specific gene expression, and male-biased lncRNA regulates its Z-linked target genes, with a positive regulatory role for gene dosage effects on the duck Z chromosome. In addition, GO enrichment and KEGG pathway analysis showed that the dosage effects of Z-linked genes were mainly associated with the cellular response to hormone stimulus, melanin biosynthetic, metabolic pathways, and melanogenesis, resulting in sex differences. CONCLUSIONS: Our data suggested that post transcriptional regulation (AS, APA and lncRNA) has a potential impact on the gene expression effects of avian Z chromosomes. Our study provides a new view of gene regulation underlying the dose effects in avian Z chromosomes at the RNA post transcriptional level.


Assuntos
Mecanismo Genético de Compensação de Dose , Cromossomos Sexuais , Animais , Aves , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Masculino , Cromossomos Sexuais/genética
19.
Animals (Basel) ; 12(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35049836

RESUMO

BACKGROUND: As a unique skin derivative of birds, the uropygial gland has a potential role in maintaining feather health and appearance. Cage-reared ducks usually have a worse feather condition than floor-reared ducks. We suspected that the metabolic components in the uropygial gland might play a vital role in their feather conditions. METHODS: Herein, the uropygial glands of floor- and cage-reared ducks were weighed, and a nontargeted metabolic analysis was performed. RESULTS: At 20 weeks of age, the relative weight of floor-reared duck uropygial glands was significantly higher than that of cage-reared ducks, indicating that the floor rearing system is better for inducing the development of uropygial glands. The nontargeted metabolic data revealed 1190 and 1149 differential metabolites under positive and negative ion modes, respectively. Among them, 49 differential metabolites were annotated between the two rearing systems. Three sulfur-containing amino acids, namely, 2-ketobutyric acid, L-aspartate-semialdehyde, and N-formyl-L-methionine, and some lipids, including inositol and sphingosine, might be responsible for the changes in plumage appearance among the various rearing conditions. CONCLUSIONS: The results of our study revealed the differences in the metabolic components of the uropygial gland in ducks reared under different rearing systems and found metabolic components to be possibly responsible for the poor feather condition of caged ducks.

20.
J Anim Physiol Anim Nutr (Berl) ; 106(3): 552-560, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34111322

RESUMO

Evidence has shown that oestrogen suppresses lipids deposition in the liver of mammals. However, the molecular mechanism of oestrogen action in hepatic steatosis of geese liver has yet to be determined. This study aimed to investigate the effect of oestrogen on lipid homeostasis at different states of geese hepatocytes in vitro. The results showed that an in vitro model of hepatic steatosis was induced by 1.5 mM sodium oleate via detecting the viability of hepatocytes and content of lipids. When the normal hepatocytes were administrated with different concentrations of oestrogen (E2 ), the expression levels of diacylglycerol acyltransferase 2 (DGAT2), microsomal triglyceride transfer protein (MTTP) and oestrogen receptors (ERs, alpha and beta) were up-regulated only at high concentrations of E2 , whereas the lipid content was not a significant difference. In goose hepatocytes of hepatic steatosis, however, the expression levels of MTTP, apolipoprotein B (apoB) and ERα/ß significantly increased at 10-7 or 10-6  M E2 . Meanwhile, the lipids content significantly increased at 10-9 and 10-8  M E2 and decreased at 80 µM E2 . Further heatmap analysis showed that ERα was clustered with apoB and MTTP in either normal hepatocytes or that of hepatic steatosis. Taken together, E2  might bind to ERα to up-regulate the expression levels of apoB and MTTP, promoting the transportation of lipids and alleviating lipids overload in hepatic steatosis of geese in vitro.


Assuntos
Fígado Gorduroso , Gansos , Animais , Apolipoproteínas B/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/veterinária , Hepatócitos , Metabolismo dos Lipídeos , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA