Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Int J Biol Macromol ; : 135956, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39317289

RESUMO

Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.

2.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125602

RESUMO

The benzofuran core inhibitors HCV-796, BMS-929075, MK-8876, compound 2, and compound 9B exhibit good pan-genotypic activity against various genotypes of NS5B polymerase. To elucidate their mechanism of action, multiple molecular simulation methods were used to investigate the complex systems of these inhibitors binding to GT1a, 1b, 2a, and 2b NS5B polymerases. The calculation results indicated that these five inhibitors can not only interact with the residues in the palm II subdomain of NS5B polymerase, but also with the residues in the palm I subdomain or the palm I/III overlap region. Interestingly, the binding of inhibitors with longer substituents at the C5 position (BMS-929075, MK-8876, compound 2, and compound 9B) to the GT1a and 2b NS5B polymerases exhibits different binding patterns compared to the binding to the GT1b and 2a NS5B polymerases. The interactions between the para-fluorophenyl groups at the C2 positions of the inhibitors and the residues at the binding pockets, together with the interactions between the substituents at the C5 positions and the residues at the reverse ß-fold (residues 441-456), play a key role in recognition and the induction of the binding. The relevant studies could provide valuable information for further research and development of novel anti-HCV benzofuran core pan-genotypic inhibitors.


Assuntos
Antivirais , Benzofuranos , Genótipo , Hepacivirus , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Benzofuranos/química , Benzofuranos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepacivirus/genética , Antivirais/farmacologia , Antivirais/química , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Sítios de Ligação , Ligação Proteica , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , RNA Polimerase Dependente de RNA
3.
Curr Pharm Des ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092641

RESUMO

BACKGROUND: Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common complication that arises from the use of anticancer drugs. Huangqi Guizhi Wuwu Decoction (HGWWD) is an effective classic prescription for treating CIPN however, the mechanism of the activity is not entirely understood. OBJECTIVE: This study aimed to investigate the remedial effects and mechanisms of HGWWD on CIPN. METHODS: Changes in behavioral biochemical histopathological and biomarker indices were used to evaluate the efficacy of HGWWD treatment. Ultra-high-performance liquid chromatography/mass spectrometry combined with the pattern recognition method was used to screen biomarkers and metabolic pathways related to CIPN. The results of pathway analyses were verified by protein blotting experiments. RESULTS: A total of 29 potential biomarkers were identified and 13 metabolic pathways were found to be involved in CIPN. In addition HGWWD reversed the levels of 19 biomarkers. Prostaglandin H2 and 17α 21-dihydroxypregnenolone were targeted as core biomarkers. CONCLUSION: This study provides scientific evidence to support the finding that HGWWD mainly inhibits the inflammatory response during CIPN by regulating arachidonic acid metabolism.

4.
Angew Chem Int Ed Engl ; : e202413661, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166420

RESUMO

Single-atom nanozymes (SAzymes) with ultrahigh atom utilization efficiency have been extensively applied in reactive oxygen species (ROS)-mediated cancer therapy. However, the high energy barriers of reaction intermediates on single-atom sites and the overexpressed antioxidants in the tumor microenvironment restrict the amplification of tumor oxidative stress, resulting in unsatisfactory therapeutic efficacy. Herein, we report a multi-enzyme mimetic MoCu dual-atom nanozyme (MoCu DAzyme) with various catalytic active sites, which exhibits peroxidase, oxidase, glutathione (GSH) oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mimicking activities. Compared with Mo SAzyme, the introduction of Cu atoms, formation of dual-atom sites, and synergetic catalytic effects among various active sites enhance substrate adsorption and reduce the energy barrier, thereby endowing MoCu DAzyme with stronger catalytic activities. Benefiting from the above enzyme-like activities, MoCu DAzyme can not only generate multiple ROS, but also deplete GSH and block its regeneration to trigger the cascade amplification of oxidative stress. Additionally, the strong optical absorption in the near-infrared II bio-window endows MoCu DAzyme with remarkable photothermal conversion performance. Consequently, MoCu DAzyme achieves high-efficiency synergistic cancer treatment incorporating collaborative catalytic therapy and photothermal therapy. This work will advance the therapeutic applications of DAzymes and provide valuable insights for nanocatalytic cancer therapy.

5.
Gels ; 10(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39195071

RESUMO

In order to explore the formation mechanism of the emulsion gel induced by high pressure processing (HPP) and its encapsulation and protection of functional ingredients, a curcumin-loaded whey protein isolate (WPI)/κ-carrageenan (κ-CG) composite emulsion gel induced by HPP was prepared. The effect of pressure (400, 500 and 600 MPa), holding time (10, 20 and 30 min) and concentration of κ-CG (0.8%, 1.0% and 1.2%, w/v) on the swelling rate, gel strength, the stability of curcumin in the emulsion gel, water distribution and its mobility, as well as the contents of interface protein were characterized. The results showed that the addition of κ-CG significantly reduced the protein concentration required for the formation of emulsion gel induced by HPP and greatly reduced the swelling rate of the emulsion gel. The gel strength and storage stability of the composite emulsion gels increased with the increase in pressure (400-600 MPa) and holding time (10-30 min). When the pressure increased to 500 MPa, the stability of curcumin in the emulsion gel significantly improved. When the ratio of WPI to κ-CG was 12:1 (the κ-CG concentration was 1.0%), both the photochemical and thermal stability of curcumin were higher than those of the other two ratios. The HPP significantly increased the mobility of monolayer water in the system, while the mobility of multilayer water and immobilized water was significantly reduced. Increasing the holding time and the concentration of κ-CG both can result in an increase in the interfacial protein content in the oil/water system, and the HPP treatment had a significant effect on the composition of the interfacial protein of the emulsion gel.

7.
J Clin Oncol ; : JCO2302363, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058972

RESUMO

PURPOSE: The KUNPENG study aimed to evaluate the efficacy and safety of vebreltinib (also known as bozitinib, APL-101, PLB-1001, and CBT-101), a potent and highly selective inhibitor of c-mesenchymal-epithelial transition (MET), in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring c-Met alterations. METHODS: This multicenter, multicohort, open-label, single-arm, phase II trial enrolled patients with c-Met dysregulated, locally advanced or metastatic NSCLC from January 2020 to August 2022 across 17 centers. Cohort 1 included patients with MET exon 14 skipping (METex14)-mutant NSCLC who had not previously received MET inhibitors. Participants were administered vebreltinib at a dosage of 200 mg twice a day in 28-day cycles. The primary end point was the objective response rate (ORR), and the key secondary end point was the duration of response (DoR), both evaluated by a blinded independent review committee according to the RECIST version 1.1. RESULTS: As of August 9, 2022, 52 patients had been enrolled in cohort 1, of whom 35 (67.3%) were treatment-naïve. The ORR reached 75% (95% CI, 61.1 to 86). Among treatment-naïve patients, the ORR was 77.1% (95% CI, 59.9 to 89.6), and in previously treated patients, it was 70.6% (95% CI, 44.0 to 89.7). The disease control rate was 96.2%, with a median DoR of 15.9 months, a median progression-free survival of 14.1 months, and a median overall survival of 20.7 months. The most common treatment-related adverse events were peripheral edema (82.7%), QT prolongation (30.8%), and elevated serum creatinine (28.8%). CONCLUSION: Vebreltinib has shown promising efficacy and a favorable safety profile in patients with METex14-mutant NSCLC.

8.
ChemSusChem ; : e202400997, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923349

RESUMO

The design and construction of highly efficient electrocatalysts for overall water splitting and urea electrolysis are significantly important for promoting energy conversion and realizing green hydrogen production. In this work, we constructed a multi-phase heterojunction through a simple hydrothermal and phosphorization process. The P-doped NiFe2O4 (P-NiFe2O4) nanoparticles were uniformly anchored on the bamboo-like N-doped carbon nanotubes (NCNTs) grown via a NiFe-alloy autocatalysis. The electronic structure and coordination environment of active species were optimized by the synergistic action of P doping, well-dispersed ultrafine NiFe2O4, and NCNTs matrix with good conductivity, enhancing their quantity and activity for electrocatalysis. Consequently, the P-NiFe2O4/NCNTs/NiFe exhibits excellent HER and OER activities with an overpotential of 111 and 266 mV at 10 mA cm-2 in 1 M KOH, respectively. The symmetrical overall water-splitting cell using P-NiFe2O4/NCNTs/NiFe as both anode and cathode delivers 10 mA cm-2 at a voltage of 1.604 V in 1 M KOH. Notably, the two-electrode cell requires a low voltage of 1.467 V to achieve a current density of 10 mA cm-2 in 1 M KOH solution with 0.6 M urea. This designed catalysts display outstanding reaction kinetics and catalytic stability. This work provides useful guidance for applying transition metal-based catalysts for hydrogen production.

9.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893524

RESUMO

The stimulator of interferon genes (STING) plays a significant role in immune defense and protection against tumor proliferation. Many cyclic dinucleotide (CDN) analogues have been reported to regulate its activity, but the dynamic process involved when the ligands activate STING remains unclear. In this work, all-atom molecular dynamics simulations were performed to explore the binding mode between human STING (hSTING) and four cyclic adenosine-inosine monophosphate analogs (cAIMPs), as well as 2',3'-cGMP-AMP (2',3'-cGAMP). The results indicate that these cAIMPs adopt a U-shaped configuration within the binding pocket, forming extensive non-covalent interaction networks with hSTING. These interactions play a significant role in augmenting the binding, particularly in interactions with Tyr167, Arg238, Thr263, and Thr267. Additionally, the presence of hydrophobic interactions between the ligand and the receptor further contributes to the overall stability of the binding. In this work, the conformational changes in hSTING upon binding these cAIMPs were also studied and a significant tendency for hSTING to shift from open to closed state was observed after binding some of the cAIMP ligands.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Ligação Proteica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sítios de Ligação , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Ligantes , Interações Hidrofóbicas e Hidrofílicas
10.
Mol Pharm ; 21(7): 3186-3203, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815167

RESUMO

Globally, prostate cancer is the most commonly diagnosed tumor and a cause of death in older men. Abiraterone, an orally administered irreversible CYP17 inhibitor, is employed to treat prostate cancer. However, abiraterone has several clinical limitations, such as poor water solubility, low dissolution rate, low bioavailability, and toxic side effects in the liver and kidney. Therefore, there is a need to identify high-efficiency and low-toxicity water-soluble abiraterone derivatives. In this work, we aimed to design and synthesize a series of abiraterone derivatives by methoxypoly(ethylene glycol) (mPEG) modification. Their antitumor activities and toxicology were analyzed in vitro and in vivo. The most potent compound, 2e, retained the principle of action on the CYP17 enzyme target and significantly improved the abiraterone water solubility, cell permeability, and blood safety. No significant abnormalities were observed in toxicology. mPEG-modification significantly improved abiraterone's antitumor activity and efficiency while reducing the associated toxic effects. The finding will provide a theoretical basis for future clinical application of mPEG-modified abiraterone.


Assuntos
Androstenos , Antineoplásicos , Polietilenoglicóis , Neoplasias da Próstata , Solubilidade , Masculino , Humanos , Androstenos/farmacologia , Androstenos/química , Animais , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Polietilenoglicóis/química , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38700794

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disease. Diabetes increases the risk of benign prostatic hyperplasia (BPH). Capsaicin is extracted from chili peppers and possesses many pharmacological properties, including anti-diabetic, pain-relieving, and anti-cancer properties. This study aimed to investigate the effects of capsaicin on glucose metabolism and prostate growth in T2DM mice and uncover the related mechanisms. Mice model of diabetes was established by administering a high-fat diet and streptozotocin. Oral administration of capsaicin for 2 weeks inhibited prostate growth in testosterone propionate (TP)-treated mice. Furthermore, oral administration of capsaicin (5 mg/kg) for 2 weeks decreased fasting blood glucose, prostate weight, and prostate index in diabetic and TP-DM mice. Histopathological alterations were measured using hematoxylin & eosin (H&E) staining. The protein expression of 5α-reductase type II, androgen receptor (AR), and prostate-specific antigen (PSA) were upregulated in diabetic and TP-DM mice, but capsaicin reversed these effects. Capsaicin decreased the protein expression of p-AKT, insulin-like growth factor-1 (IGF-1), IGF-1R, and the receptor for advanced glycation end products (RAGE) in diabetic and TP-DM mice. Capsaicin also regulated epithelial-mesenchymal transition (EMT) and modulated the expression of fibrosis-related proteins, including E-cadherin, N-cadherin, vimentin, fibronectin, α-SMA, TGFBR2, TGF-ß1, and p-Smad in TP-DM mice. In this study, capsaicin alleviated diabetic prostate growth by attenuating EMT. Mechanistically, capsaicin affected EMT by regulating RAGE/IGF-1/AKT, AR, and TGF-ß/Smad signalling pathways. These results provide with new therapeutic approach for treating T2DM or T2DM-induced prostate growth.

12.
Dalton Trans ; 53(22): 9467-9472, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767505

RESUMO

Herein, we investigate the product type and distribution during the synthesis of azido-functionalized larger polyhedral oligomeric silsesquioxanes (POSSs) using 3-chloropropyl- and chloromethyldimethylsilylethyl-functionalized T8, T10, and T12 POSSs as precursors. Our findings indicate that cage rearrangement occurs for the 3-chloropropyl-functionalized POSS cages with a stability order of T12 > T10 > T8, while the chloromethyldimethylsilylethyl-functionalized POSS cages remain structurally intact after the nucleophilic substitution.

13.
Saudi Pharm J ; 32(6): 102100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812945

RESUMO

We previously demonstrated that baicalin had efficacy against gouty arthritis (GA) by oral administration. In this paper, a novel baicalin-loaded microemulsion-based gel (B-MEG) was prepared and assessed for the transdermal delivery of baicalin against GA. The preparation method and transdermal capability of B-MEG was screened and optimized using the central composite design, Franz diffusion cell experiments, and the split-split plot design. Skin irritation tests were performed in guinea pigs. The anti-gout effects were evaluated using mice. The optimized B-MEG comprised of 50 % pH 7.4 phosphate buffered saline, 4.48 % ethyl oleate, 31.64 % tween 80, 13.88 % glycerin, 2 % borneol, 0.5 % clove oil and 0.5 % xanthan gum, with a baicalin content of (10.42 ± 0.08) mg/g and particle size of (15.71 ± 0.41) nm. After 12 h, the cumulative amount of baicalin permeated from B-MEG was (672.14 ± 44.11) µg·cm-2. No significant skin irritation was observed following B-MEG application. Compared to the model group, B-MEG groups significantly decreased the rate of auricular swelling (P < 0.01) and number of twists observed in mice (P < 0.01); and also reduced the rate of paw swelling (P < 0.01) and inflammatory cell infiltration in a mouse model of GA. In conclusion, B-MEG represents a promising transdermal carrier for baicalin delivery and can be used as a potential therapy for GA.

14.
Sci Rep ; 14(1): 8505, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605045

RESUMO

The 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi), a rumen protective methionine, has been extensively studied in dairy cows and beef cattle and has been shown to regulate gastrointestinal microbiota and improve production performance. However, knowledge of the application of HMBi on cashmere goats and the simultaneous study of rumen and hindgut microbiota is still limited. In this study, HMBi supplementation increased the concentration of total serum protein, the production of microbial protein in the rumen and feces, as well as butyrate production in the feces. The results of PCoA and PERMANOVA showed no significant difference between the rumen microbiota, but there was a dramatic difference between the fecal microbiota of the two groups of Cashmere goats after the HMBi supplementation. Specifically, in the rumen, HMBi significantly increased the relative abundance of some fiber-degrading bacteria (such as Fibrobacter) compared with the CON group. In the feces, as well as a similar effect as in the rumen (increasing the relative abundance of some fiber-degrading bacteria, such as Lachnospiraceae FCS020 group and ASV32), HMBi diets also increased the proliferation of butyrate-producing bacteria (including Oscillospiraceae UCG-005 and Christensenellaceae R-7 group). Overall, these results demonstrated that HMBi could regulate the rumen and fecal microbial composition of Liaoning cashmere goats and benefit the host.


Assuntos
Ésteres , Microbiota , Animais , Bovinos , Feminino , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Ésteres/metabolismo , Rúmen/microbiologia , Fermentação , Cabras , Dieta/veterinária , Fezes , Bactérias/metabolismo , Suplementos Nutricionais , Ração Animal/análise , Lactação/fisiologia
15.
Eur Spine J ; 33(7): 2813-2823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38637404

RESUMO

OBJECTIVE: This study aimed to evaluate preoperative (pre-op) radiographic characteristics and specific surgical interventions in patients with degenerative lumbar spondylolisthesis (DLS) who underwent lumbar fusion surgery (LFS), with a focus on analyzing predictors of postoperative restoration of segmental lumbar lordosis (SLL). METHODS: A retrospective review at a single center identified consecutive single-level DLS patients who underwent LFS between 2016 and 2022. Radiographic measures included disc angle (DA), SLL, lumbar lordosis (LL), anterior/posterior disc height (ADH/PDH), spondylolisthesis percentage (SP), intervertebral disc degeneration, and paraspinal muscle quality. Surgery-related measures included cage position, screw insertion depth, spondylolisthesis reduction rate, and disc height restoration rate. A change in SLL ≥ 4° indicated increased segmental lumbar lordosis (ISLL), and unincreased segmental lumbar lordosis (UISLL) < 4°. Propensity score matching was employed for a 1:1 match between ISLL and UISLL patients based on age, gender, body mass index, smoking status, and osteoporosis condition. RESULTS: A total of 192 patients with an average follow-up of 20.9 months were enrolled. Compared to UISLL patients, ISLL patients had significantly lower pre-op DA (6.78° vs. 11.84°), SLL (10.73° vs. 18.24°), LL (42.59° vs. 45.75°), and ADH (10.09 mm vs. 12.21 mm) (all, P < 0.05). ISLL patients were predisposed to more severe intervertebral disc degeneration (P = 0.047) and higher SP (21.30% vs. 19.39%, P = 0.019). The cage was positioned more anteriorly in ISLL patients (67.00% vs. 60.08%, P = 0.000), with more extensive reduction of spondylolisthesis (- 73.70% vs. - 56.16%, P = 0.000) and higher restoration of ADH (33.34% vs. 8.11%, P = 0.000). Multivariate regression showed that lower pre-op SLL (OR 0.750, P = 0.000), more anterior cage position (OR 1.269, P = 0.000), and a greater spondylolisthesis reduction rate (OR 0.965, P = 0.000) significantly impacted SLL restoration. CONCLUSIONS: Pre-op SLL, cage position, and spondylolisthesis reduction rate were identified as significant predictors of SLL restoration after LFS for DLS. Surgeons are advised to meticulously select patients based on pre-op SLL and strive to position the cage more anteriorly while minimizing spondylolisthesis to maximize SLL restoration.


Assuntos
Lordose , Vértebras Lombares , Fusão Vertebral , Espondilolistese , Humanos , Espondilolistese/cirurgia , Espondilolistese/diagnóstico por imagem , Masculino , Fusão Vertebral/métodos , Feminino , Lordose/cirurgia , Lordose/diagnóstico por imagem , Vértebras Lombares/cirurgia , Vértebras Lombares/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Degeneração do Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Resultado do Tratamento , Radiografia/métodos
16.
Biomater Sci ; 12(11): 2801-2830, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38683241

RESUMO

Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.


Assuntos
Osso e Ossos , Neovascularização Fisiológica , Osteogênese , Engenharia Tecidual , Alicerces Teciduais , Osteogênese/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Alicerces Teciduais/química , Angiogênese
17.
Adv Healthc Mater ; 13(11): e2303309, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38214472

RESUMO

To counteract the high level of reactive oxygen species (ROS) caused by rapid growth, tumor cells resist oxidative stress by accelerating the production and regeneration of intracellular glutathione (GSH). Numerous studies focus on the consumption of GSH, but the regeneration of GSH will enhance the reduction level of tumor cells to resist oxidative stress. Therefore, inhibiting the regeneration of GSH; while, consuming GSH is of great significance for breaking the redox balance of tumor cells. Herein, a simple termed MnOx-coated Au (AMO) nanoflower, as a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) nanoenzyme, is reported for efficient tumor therapy. Au nanoparticles exhibit the capability to catalyze the oxidation of NADPH, hindering GSH regeneration; while, concurrently functioning as a photothermal agent. During the process of eliminating intracellular GSH, MnOx releases Mn2+ that subsequently engages in Fenton-like reactions, ultimately facilitating the implementation of chemodynamic therapy (CDT). Overall, this NOX enzyme-based nanoplatform enhances ROS generation and disrupts the state of reduction equilibrium, inducing apoptosis and ferroptosis by blocking GSH regeneration and increasing GSH consumption, thereby achieving collaborative treatments involving photothermal therapy (PTT), CDT, and catalytic therapy. This research contributes to NADPH and GSH targeted tumor therapy and showcases the potential of nanozymes.


Assuntos
Glutationa , NADPH Oxidases , Espécies Reativas de Oxigênio , Glutationa/metabolismo , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/metabolismo , Ouro/química , Linhagem Celular Tumoral , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/patologia , Óxidos/química , Óxidos/farmacologia , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Terapia Fototérmica , Apoptose/efeitos dos fármacos , NADP/metabolismo , Ferroptose/efeitos dos fármacos
18.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276629

RESUMO

Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising therapeutic target for treating various cancers (such as breast cancer, liver cancer, etc.) and other diseases (blood diseases, cardiovascular diseases, etc.), owing to its observed overexpression, thereby presenting significant opportunities in drug development. Since its discovery in 2004, extensive research has been conducted on LSD1 inhibitors, with notable contributions from computational approaches. This review systematically summarizes LSD1 inhibitors investigated through computer-aided drug design (CADD) technologies since 2010, showcasing a diverse range of chemical scaffolds, including phenelzine derivatives, tranylcypromine (abbreviated as TCP or 2-PCPA) derivatives, nitrogen-containing heterocyclic (pyridine, pyrimidine, azole, thieno[3,2-b]pyrrole, indole, quinoline and benzoxazole) derivatives, natural products (including sanguinarine, phenolic compounds and resveratrol derivatives, flavonoids and other natural products) and others (including thiourea compounds, Fenoldopam and Raloxifene, (4-cyanophenyl)glycine derivatives, propargylamine and benzohydrazide derivatives and inhibitors discovered through AI techniques). Computational techniques, such as virtual screening, molecular docking and 3D-QSAR models, have played a pivotal role in elucidating the interactions between these inhibitors and LSD1. Moreover, the integration of cutting-edge technologies such as artificial intelligence holds promise in facilitating the discovery of novel LSD1 inhibitors. The comprehensive insights presented in this review aim to provide valuable information for advancing further research on LSD1 inhibitors.


Assuntos
Produtos Biológicos , Inibidores Enzimáticos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Lisina , Simulação de Acoplamento Molecular , Inteligência Artificial , Desenho de Fármacos , Histona Desmetilases/metabolismo , Relação Estrutura-Atividade
19.
Small ; 20(3): e2305567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702141

RESUMO

Mesoporous silica nanoparticles (MSNs) have been widely praised as nanoadjuvants in vaccine/tumor immunotherapy thanks to their excellent biocompatibility, easy-to-modify surface, adjustable particle size, and remarkable immuno-enhancing activity. However, the application of MSNs is still greatly limited by some severe challenges including the unclear and complicated relationships of structure and immune effect. Herein, three commonly used MSNs with different skeletons including MSN with tetrasulfide bonds (TMSN), MSN containing ethoxy framework (EMSN), and pure -Si-O-Si- framework of MSN (MSN) are comprehensively compared to study the impact of chemical construction on immune effect. The results fully demonstrate that the three MSNs have great promise in improving cellular immunity for tumor immunotherapy. Moreover, the TMSN performs better than the other two MSNs in antigen loading, cellular uptake, reactive oxygen species (ROS) generation, lymph node targeting, immune activation, and therapeutic efficiency. The findings provide a new paradigm for revealing the structure-function relationship of mesoporous silica nanoadjuvants, paving the way for their future clinical application.


Assuntos
Nanopartículas , Neoplasias , Nitrilas , Humanos , Porosidade , Dióxido de Silício/química , Imunoterapia , Nanopartículas/química , Neoplasias/terapia , Esqueleto
20.
Nano Lett ; 24(2): 623-631, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38048272

RESUMO

The cooling power of a radiative cooler is more than halved in the tropics, e.g., Singapore, because of its harsh weather conditions including high humidity (84% on average), strong downward atmospheric radiation (∼40% higher than elsewhere), abundant rainfall, and intense solar radiation (up to 1200 W/m2 with ∼58% higher UV irradiation). So far, there has been no report of daytime radiative cooling that well achieves effective subambient cooling. Herein, through integrated passive cooling strategies in a hydrogel with desirable optofluidic properties, we demonstrate stable subambient (4-8 °C) cooling even under the strongest solar radiation in Singapore. The integrated passive cooler achieves an ultrahigh cooling power of ∼350 W/m2, 6-10 times higher than a radiative cooler in a tropical climate. An in situ study of radiative cooling with various hydration levels and ambient humidity is conducted to understand the interaction between radiation and evaporative cooling. This work provides insights for the design of an integrated cooler for various climates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA