RESUMO
The current study aimed to compare the effects of increasing concentrations of dietary threonine (Thr), tryptophan (Trp), and glycine (Gly) on growth performance, stress biomarkers, and intestinal function in broiler chickens under multiple stress conditions. Five hundred sixty broiler chickens at 21 d old were randomly allotted to 5 treatments with 8 replicates. Birds in a positive control (PC) treatment were raised under low stock density (16.9 birds/m2 per cage) with recommended environmental conditions, whereas birds in 4 treatments were subjected to multiple stress conditions: a cyclic heat stress of 30 ± 0.3 °C for 10 h and 23 ± 0.2 °C for 14 h per day with high stock density (25.3 birds/m2 per cage). A basal diet was assigned to both PC and negative control (NC) treatments. Three additional diets were individually formulated to contain double concentrations of digestible Thr, Trp, or Gly + Ser compared with their concentrations in the basal diet. The experiment lasted for 14 d. Results showed that NC treatment had less growth performance (P < 0.001), jejunal goblet cell counts (P = 0.018), and trans-epithelial electrical resistance (TEER; P < 0.001), but greater (P = 0.026) feather corticosterone (CORT) concentrations than PC treatment. Thr treatment showed the least (P < 0.001) feed conversion ratio (FCR) among treatments under multiple stress conditions. Thr, Trp, and Gly treatments had less (P = 0.026) feather CORT concentrations, but had greater (P < 0.001) TEER than NC treatment. In conclusion, increasing concentrations of dietary Thr, Trp, or Gly improve the growth performance and intestinal health in broiler chickens with decreasing stress response under multiple stress conditions.
RESUMO
The current experiment aimed to investigate the effect of dietary glycine (Gly) supplementation on productive performance, egg quality, stress response, and fatty liver incidence in laying hens raised under heat stress (HS) conditions. A total of two hundred eighty 24-wk-old Lohmann Brown-Lite laying hens were randomly allotted to 1 of 4 dietary treatments with 7 replicates. The negative control (NC) diet was prepared to meet or exceed the nutrient and energy requirement for Lohmann Brown laying hens, whereas the positive control (PC) diet was formulated to increase AMEn by 100 kcal/kg compared with the NC diet. Two additional diets were prepared by supplementing 0.341% and 0.683% Gly to the NC diet. All hens were exposed to cyclic HS at 31.4 ± 1.17°C for 8 h/d and 26.7 ± 1.10°C for the remaining time for a 12-wk trial. Results indicated that increasing supplementation of Gly in diets tended (linear, P = 0.088) to decrease the FCR of laying hens. Increasing supplementation of Gly in diets increased (linear, P < 0.05) eggshell lightness and decreased (linear, P < 0.05) egg yolk color. Moreover, a tendency for a quadratic association (P < 0.10) of serum aspartate aminotransferase and alanine aminotransferase concentrations with increasing supplementation of Gly was observed. Increasing supplementation of Gly in diets decreased (linear, P < 0.05) blood heterophil:lymphocyte ratio of laying hens. Hens fed the NC diet showed higher fatty liver incidence (P < 0.05) than those fed the PC diet, but increasing supplementation of Gly decreased (linear, P < 0.05) fatty liver incidence of laying hens. In conclusion, increasing supplementation of Gly up to 0.683% in diets decreases FCR, stress response, and fatty liver incidence in laying hens raised under HS conditions.
Assuntos
Suplementos Nutricionais , Fígado Gorduroso , Feminino , Animais , Glicina , Galinhas/fisiologia , Incidência , Ração Animal/análise , Óvulo , Dieta/veterinária , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/veterinária , Resposta ao Choque TérmicoRESUMO
OBJECTIVE: The objective of the present study was to investigate the effect of dietary betaine (BT) supplementation on the hepatic transcriptome profiles in broiler chickens raised under heat stress (HS) conditions. METHODS: A total of 180 (21-d-old) Ross 308 male broiler chicks were allotted to 1 of 3 treatment groups with 6 replicated cages in a completely randomized design. One group was kept under thermoneutral conditions at all times and was fed a basal diet (PC). Other 2 groups were exposed to a cyclic heat stress condition. One of the 2 groups under heat stress conditions was fed the basal diet as a negative control (NC), whereas the other group was fed the basal diet supplemented with 0.2% BT. All chickens were provided with diets and water ad libitum for 21 d. Following the experiment, the liver samples were collected for RNA sequencing analysis. RESULTS: Broiler chickens in NC and BT group had decreased (p<0.05) growth performance. In the transcriptome analysis, the number of differentially expressed genes were identified in the liver by HS conditions and dietary BT supplementation. In the comparison between NC and PC treatments, genes related to energy and nucleic acid metabolism, amino acid metabolism, and immune system were altered by HS, which support the reason why heat-stressed poultry had decreased growth performance. In the comparison between NC and BT treatments, genes related to lipid metabolism, carbohydrate metabolism, and immune system were differently expressed under HS conditions. CONCLUSION: HS negatively impacts various physiological processes, including DNA replication, metabolism of amino acids, lipids, and carbohydrates, and cell cycle progression in broiler chickens. Dietary BT supplementation, however, offers potential counteractive effects by modulating liver function, facilitating gluconeogenesis, and enhancing immune systems. These findings provide a basis for understanding molecular responses by HS and the possible benefits of dietary BT supplementation in broiler chickens exposed to HS.
RESUMO
This study aimed to investigate the effect of increasing fat supplementation in diets on productive performance, egg quality, and fatty liver incidence in laying hens during the entire laying cycle. A total of three hundred eighty-four 18-wk-old Hy-Line Brown laying hens were randomly allotted to 1 of 3 dietary treatments with 8 replicates for a 52-wk feeding trial. Each replicate comprised 16 consecutive cages with 1 hen per cage. The experimental diets were prepared by supplementing 0, 1.5, or 3.0% tallow to a basal diet, but all nutrients and energy in 3 diets were formulated to be equalized according to the recommended nutrient and energy concentrations at each phase of laying hens. Results indicated that increasing fat supplementation in diets decreased (linear, P < 0.01) feed conversion ratio (FCR) by increased egg mass (linear, P < 0.05) but decreased feed intake (linear and quadratic, P < 0.05) in laying hens during overall periods. Increasing fat supplementation in diets decreased (linear and quadratic, P < 0.05) egg yolk color during overall periods. Increasing fat supplementation in diets had no effects on liver color and hemorrhagic score measured at 60 wk (phase 3) and 70 wk of age (phase 4) without affecting hepatic fat concentrations during overall periods. However, the relative abdominal fat weight in laying hens was increased (linear and quadratic, P < 0.05) during overall periods by increasing fat supplementation in diets. In conclusion, increasing fat supplementation up to 3.0% in diets improves FCR with no impacts on fatty liver incidence and economics in laying hens throughout the entire laying cycle.
RESUMO
The current experiment was conducted to investigate the effect of individual or combination of dietary betaine (Bet) and glycine (Gly) on productive performance, stress response, liver health, and intestinal barrier function in broiler chickens raised under heat stress (HS) conditions. A total of four hundred twenty 21-d-old Ross 308 broiler chickens were randomly allotted to 1 of 5 dietary treatments with 7 replicates. Birds in treatment 1 were raised under the thermoneutral condition (TN; 23 ± 0.6°C). Birds in other 4 treatment groups were subjected to a cyclic HS by exposing them to 32 ± 0.9°C for 8 h/d (from 09:00 to 17:00 h) and 28 ± 1.2°C for the remaining time for 14 d. Birds were fed a basal diet in TN condition (TN-C) and one group in HS conditions (HS-C), whereas other birds raised under HS conditions were fed the basal diet supplemented with 0.20% Bet (HS-Bet), 0.79% Gly (HS-Gly), or their combination (0.20% Bet + 0.79% Gly; HS-Bet+Gly). Results indicated that birds in HS-Bet, HS-Gly, or HS-Bet+Gly treatment had higher (P < 0.05) final BW and BW gain, but lower (P < 0.05) feed conversion ratio (FCR) than those in HS-C treatment. However, values for improved final BW, BW gain, and FCR by dietary treatments were lower (P < 0.05) than those measured in TN-C treatment. Under HS conditions, birds in HS-Bet, HS-Gly, or HS-Bet+Gly treatment had lower (P < 0.05) heterophil to lymphocyte ratio than those in HS-C treatment. Birds in HS-Gly or HS-Bet+Gly treatment had higher (P < 0.05) villus height and goblet cell number than birds in HS-C treatment. Intestinal permeability was higher (P < 0.05) in all HS-treatment groups than in TN-C treatment, but it was not affected by dietary treatment. In conclusion, individual supplementation of 0.20% Bet or 0.79% Gly in diets alleviates the negative effect of HS in broiler chickens. However, the synergistic effect of the combination of 0.20% Bet and 0.79% Gly in broiler diets seems lower than expected.
Assuntos
Betaína , Galinhas , Animais , Ração Animal/análise , Betaína/farmacologia , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Glicina/farmacologia , Resposta ao Choque Térmico , FígadoRESUMO
The objective of the current experiment was to investigate the effect of dietary concentrations of ME and neutral detergent fiber (NDF) on productive performance, egg quality, fatty liver incidence, and hepatic fatty acid metabolism in aged laying hens. A total of three hundred twenty 75-wk-old Hy-Line Brown laying hens were allotted to 1 of 4 dietary treatments with 8 replicates. Each replicate consisted of 10 consecutive cages with 1 hen per cage. The experiment was conducted using a completely randomized design with 2 × 2 factorial arrangement consisting of 2 levels of ME (normal [commercially recommended AMEn levels; 2,730 kcal/kg] and low [50 kcal/kg reduction in AMEn; 2,680 kcal/kg]) and 2 levels of NDF (low [9.01 and 9.61%; normal-ME and low-ME diets, respectively] and high [12.57 and 13.42%; normal-ME and low-ME diets, respectively]) in the diet. The diets and water were provided to hens on an ad libitum basis for 12 wk. Results indicated that no interactions between dietary concentrations of ME and NDF were observed for all measurements except for egg yolk color, eggshell thickness, and 2 hepatic gene expressions (i.e., carnitine palmitoyl transferase 1A and malic enzyme). For the main effects, increasing NDF concentrations in diets increased (P < 0.05) feed intake without affecting other productive performance. Hens fed normal-ME and high-NDF diets showed the darkest (P < 0.05) egg yolk color among those fed treatment diets, showing an interaction (P < 0.05). Increasing NDF concentrations in low-ME diets did not influence eggshell thickness, but those in normal-ME diets increased eggshell thickness in laying hens, showing an interaction (P < 0.05). For the main effects, increasing concentrations of dietary NDF or ME reduced (P < 0.05) hepatic fat concentrations with decreasing expressions in several genes related to fatty acid synthesis. In conclusion, increasing NDF concentrations in commercially-recommended ME diets decrease hepatic fat concentrations in aged laying hens, and therefore, may have a preventative effect on the fatty liver development in aged laying hens.
Assuntos
Galinhas , Fígado Gorduroso , Feminino , Animais , Detergentes , Incidência , Óvulo , Dieta/veterinária , Fígado Gorduroso/veterinária , Ácidos Graxos , Ração Animal/análise , Suplementos NutricionaisRESUMO
OBJECTIVE: The objective of the present study was to investigate the comparative effects of dietary functional nutrients including glutamine (Gln), chromium picolinate (Cr picolinate), vitamin C (Vit C), betaine (Bet), and taurine (Tau) on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. METHODS: A total of 420 21-d-old Ross 308 male broiler chickens (initial body weight = 866±61.9 g) were randomly allotted to 1 of 7 treatment groups with 6 replicates. One group was kept under thermoneutral conditions and was fed a basal diet (PC, positive control). Other 6 groups were exposed to a cyclic heat stress condition. One of the 6 groups was fed the basal diet (NC, negative control), whereas 5 other groups were fed the basal diet supplemented with 0.5% Gln, 500 ppb Cr picolinate, 250 mg/kg Vit C, 0.2% Bet, or 1.0% Tau. The diets and water were provided ad libitum for 21 d. RESULTS: Broiler chickens in NC group had decreased (p<0.05) growth performance and immune responses measured based on cutaneous basophil hypersensitivity (CBH), but increased (p<0.05) stress responses measured based on feather corticosterone concentrations and blood heterophil:lymphocyte than those in PC group. However, none of dietary functional nutrients had a positive effect on growth performance of broiler chickens. Dietary supplementation of 250 mg/kg Vit C improved (p<0.05) CBH responses of broiler chickens, but other functional nutrients had no such an improvement in CBH responses. All functional nutrients decreased (p<0.05) stress responses of broiler chickens. CONCLUSION: Functional nutrients including Gln, Cr picolinate, Vit C, Bet, and Tau at the supplemental levels used in this study decrease stress responses of broiler chickens to a relatively similar extent. However, this reduction in stress responses could not fully ameliorate decreased productive performance of broiler chickens raised under the current heat stress conditions.
RESUMO
OBJECTIVE: The objective of the current study was to investigate the effects of dietary hatchery by-products (HBPs) as a replacement of fish meal (FM) on growth performance, relative organ weight, plasma measurements, immune organ index, meat quality, and tibia characteristics of broiler chickens. METHODS: A total of 720 broiler chickens (3 d of age) were randomly allotted to 1 of 9 treatments with 8 replicates. Each replicate consisted of 5 male and 5 female birds. The basal diet was formulated to contain 5.0% commercial FM, whereas eight treatment diets were prepared by replacing 25%, 50%, 75%, or 100% of FM in the basal diet with infertile eggs (IFE) or a mixture of various HBPs (MIX); therefore, the inclusion levels of IFE or MIX in the experimental diets were 1.25%, 2.50%, 3.75%, or 5.00%. The diets and water were provided on an ad libitum basis for 32 d. RESULTS: Increasing inclusion levels of IFE as a replacement of FM in diets had no effects on growth performance, plasma measurements, immune organ index, and tibia characteristics of broiler chickens. Increasing inclusion levels of IFE in diets increased (linear, p<0.05) meat lightness (L*) but decreased (linear, p<0.05) meat redness (a*). The breast meat pH at 1-h postmortem was increased (linear, p<0.05) by increasing inclusion levels of IFE in diets. Likewise, increasing inclusion levels of MIX in diets had no effects on growth performance, relative organ weight, plasma measurements, immune organ index, and tibia characteristics. However, increasing inclusion levels of MIX in diets increased (linear, p<0.05) 1-h postmortem pH but decreased (linear, p<0.05) 24-h postmortem pH of breast meat. Increasing inclusion levels of MIX in diets decreased (linear, p<0.05) thiobarbituric acid reactive substances values of breast meat. CONCLUSION: Both IFE and MIX are suitable alternatives to FM as protein ingredients in broiler diets.
RESUMO
OBJECTIVE: Eggshell color is an important indicator of egg quality for consumers, especially for brown eggs. Various factors related to laying hens and their environment affect brown eggshell coloration. However, there have been no studies investigating hepatic functions of laying hens with variable intensity of brown eggshell color. Therefore, this study was aimed to identify potential factors affecting brown eggshell coloration in aged laying hens at the hepatic transcriptomic level. METHODS: Five hundred 92-wk-old Hy-line Brown laying hens were screened to select laying hens with different intensity of brown eggshell color based on eggshell color fans. Based on eggshell color scores, hens with dark brown eggshells (DBE; eggshell color fan score = 14.8) and hens with light brown eggshells (LBE; eggshell color fan score = 9.7) were finally selected for the liver sampling. We performed RNA-seq analysis using the liver samples through the paired-end sequencing libraries. Differentially expressed genes (DEGs) profiling was carried out to identify their biological meaning by bioinformatics. RESULTS: A total of 290 DEGs were identified with 196 being up-regulated and 94 being down-regulated in DBE groups as compared to LBE groups. The Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that these DEGs belong to several biological pathways including herpes simplex infection (toll-like receptor 3 [TLR3], cyclin-dependent kinase 1, etc.) and influenza A (TLR3, radical S-adenosyl methionine domain containing 2, myxovirus [influenza virus] resistance 1, etc.). Genes related to stress response (ceremide kinase like) and nutrient metabolism (phosphoenolpyruvate carboxy-kinase 1, methylmalonic aciduria [cobalamin deficiency] cblB type, glycine receptor alpha 2, solute carrier family 7 member 11, etc.) were also identified to be differentially expressed. CONCLUSION: The current results provide new insights regarding hepatic molecular functions related to different intensity of brown eggshell color in aged laying hens. These insights will contribute to future studies aiming to optimize brown eggshell coloration in aged laying hens.
RESUMO
The present experiment was conducted to derive equations for predicting daily lead (Pb) intake and tissue Pb concentrations in broiler chickens using feather Pb concentrations. A total of 800 3-day-old broiler chickens were allotted to one of five dietary treatments with 16 replicates, each replicate consisting of 10 birds, in a completely randomized design. Dietary Pb concentrations were set to 0, 50, 100, 200, or 400 mg/kg by adding a lead acetate. The experimental diets were provided ad libitum for 32 days. Results indicated that growth performance and serum measurements were not affected by increasing concentrations of Pb in diets, which represented that the toxic level of dietary Pb may exceed over 400 mg/kg in broiler diets. Increasing concentrations of Pb in diets increased Pb concentrations in the liver (linear and quadratic, P < 0.05), breast (linear, P < 0.01), and feather (linear, P < 0.01). Feather Pb concentrations were greater than Pb concentrations in the liver and breast, indicating that the feather is highly responsive tissue of broiler chickens to various dietary Pb concentrations. Consequently, the equations for predicting daily Pb intake and Pb concentrations in the liver and breast were derived from Pb concentrations in the feather. Resulting equations indicated that feather Pb concentrations in broiler chickens can be used to predict both daily Pb intake and Pb concentrations in the liver and breast.
Assuntos
Ração Animal/análise , Dieta , Plumas/metabolismo , Chumbo/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Galinhas , Plumas/crescimento & desenvolvimento , Chumbo/farmacocinética , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Distribuição Aleatória , Distribuição Tecidual , Aumento de Peso/efeitos dos fármacosRESUMO
OBJECTIVE: As laying hens become aged, laying performance and egg quality are generally impaired. One of the practical methods to rejuvenate production and egg quality of aged laying hens with decreasing productivity is a forced molting. However, the changes in intestinal microbiota after forced molting of aged hens are not clearly known. The aim of the present study was to analyze the changes in excreta bacterial communities after forced molting of aged laying hens. METHODS: A total of one hundred 66-wk-old Hy-Line Brown laying hens were induced to molt by a 2-d water removal and an 11-d fasting until egg production completely ceased. The excreta samples of 16 hens with similar body weight were collected before and immediately after molting. Excreta bacterial communities were analyzed by high-throughput sequencing of bacterial 16S rRNA genes. RESULTS: Bacteroidetes, Firmicutes, and Proteobacteria were the three major bacterial phyla in pre-molting and immediate post-molting hens, accounting for more than 98.0%. Lactobacillus genus had relatively high abundance in both group, but decreased by molting (62.3% in pre-molting and 24.9% in post-molting hens). Moreover, pathogenic bacteria such as Enterococcus cecorum and Escherichia coli were more abundant in immediate post-molting hens than in pre-molting hens. Forced molting influenced the alpha diversity, with higher Chao1 (p = 0.012), phylogenetic diversity whole tree (p = 0.014), observed operational taxonomic unit indices (p = 0.006), and Simpson indices (p<0.001), which indicated that forced molting increased excreta bacterial richness of aged laying hens. CONCLUSION: This study improves the current knowledge of bacterial community alterations in the excreta by forced molting in aged laying hens, which can provide increasing opportunity to develop novel dietary and management skills for improving the gastrointestinal health of aged laying hens after molting.
RESUMO
OBJECTIVE: This experiment investigated the effect of dietary net energy (NE) concentrations on growth performance and NE intake of growing gilts. METHODS: Five diets were formulated to contain 9.6, 10.1, 10.6, 11.1, and 11.6 MJ NE/kg, respectively. A metabolism trial with 10 growing pigs (average body weight [BW] = 15.9±0.24 kg) was conducted to determine NE concentrations of 5 diets based on French and Dutch NE systems in a 5×5 replicated Latin square design. A growth trial also was performed with five dietary treatments and 12 replicates per treatment using 60 growing gilts (average BW = 15.9±0.55 kg) for 28 days. A regression analysis was performed to predict daily NE intake from the BW of growing gilts. RESULTS: Increasing NE concentrations of diets did not influence average daily gain and average daily feed intake of growing gilts. There was a quadratic relationship (p = 0.01) between dietary NE concentrations and feed efficiency (G:F), although the difference in G:F among treatment means was relatively small. Regression analysis revealed that daily NE intake was linearly associated with the BW of growing gilts. The prediction equations for NE intake with the BW of growing gilts were: NE intake (MJ/d) = 1.442+(0.562×BW, kg), R2 = 0.796 when French NE system was used, whereas NE intake (MJ/d) = 1.533+(0.614×BW, kg), R2 = 0.810 when Dutch NE system was used. CONCLUSION: Increasing NE concentrations of diets from 9.6 to 11.6 MJ NE/kg have little impacts on growth performance of growing gilts. Daily NE intake can be predicted from the BW between 15 and 40 kg in growing gilts.
RESUMO
OBJECTIVE: An experiment was conducted to determine the effect of superdosing phytase on productive performance and egg quality in laying hens. METHODS: A total of 200 42-wk-old Hy-Line Brown laying hens were allotted into 1 of 5 dietary treatments with 5 replicates consisting of 8 hens per replicate. The positive control (PC) and negative control diets (NC) were prepared based on the recommended P levels in layer diets. Supplemental phytase was added to the negative control diet at 10,000 (SD10), 20,000 (SD20), or 30,000 (SD30) fytase units (FTU)/kg. Productive performance was summarized for 6 weeks from 42 weeks to 47 weeks of age. Egg quality was assessed from 4 eggs per replicate randomly collected at the conclusion of the experiment. RESULTS: The SD20 treatment had greater (p<0.05) hen-day egg production than PC, NC, and SD10 treatment groups. There was no difference in hen-day egg production between SD20 and SD30 treatment groups. However, SD30 treatment had greater (p<0.05) hen-day egg production than PC treatment, but showed no difference in hen-day egg production as compared to NC and SD10 treatment groups. However, egg weight, egg mass, feed intake, and feed conversion ratio were not affected by dietary treatments. Egg quality including eggshell strength, eggshell color, egg yolk color, and haugh unit was not influenced by dietary treatments. CONCLUSION: Superdosing level of 20,000 FTU/kg phytase in diets has a positive effect on egg production rate, but no beneficial effect on egg quality in laying hens.
RESUMO
OBJECTIVE: An experiment was conducted to investigate the effect of dietary Ca concentrations in low non-phytate phosphorus (NPP) diets containing phytase on growth performance, bone mineralization, litter quality, and footpad dermatitis (FPD) incidence in growing broiler chickens. METHODS: A total of 1,800 21-day-old Ross 308 growing broiler chickens were allotted to 1 of 6 dietary treatments with 6 replicated cages. Six diets were formulated to provide increasing Ca concentrations of 4.0, 5.0, 6.0, 7.0, 8.0, or 9.0 g/kg in diets. The concentrations of NPP in all diets were maintained at 3.0 g/kg, and phytase was supplemented to all diets at the level of 1,000 fytase units (FTU)/kg. At the end of the 14-d feeding trial, birds were euthanized for tibia sampling, and litter samples were collected from 3 areas in the cage. The FPD incidence was measured based on a 6-point scoring system. RESULTS: Dietary Ca concentrations had no effect on growth performance of growing broiler chickens. However, a tendency (linear, p = 0.05) for decreased feed efficiency was observed as dietary Ca concentrations were increased. The concentrations of Ca and P in the tibia of broiler chickens increased (linear and quadratic, p<0.01) with increasing Ca concentrations in low NPP diets containing phytase. Litter pH, moisture, and N contents were not affected by increasing Ca concentrations in low NPP diets containing phytase. However, a tendency (quadratic, p = 0.10) for increased FPD incidence with increasing dietary Ca concentrations was observed. CONCLUSION: Dietary Ca concentrations from 4.0 to 9.0 g/kg in low NPP diets containing phytase have little effects on growth performance of growing broiler chickens. However, Ca and P concentrations in the tibia are decreased if dietary Ca concentrations are less than 5.0 g/kg. The FPD incidence for growing broiler chickens may be decreased if less than 9.0 g/kg of Ca is included in diets.