Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Diabetes Investig ; 12(6): 920-930, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33417747

RESUMO

AIMS/INTRODUCTION: Glutamine is the most abundant amino acid in the circulation. In this study, we investigated cell signaling in the amplification of insulin secretion by glutamine. MATERIALS AND METHODS: Clonal pancreatic ß-cells MIN6-K8, wild-type B6 mouse islets, glutamate dehydrogenase (GDH) knockout clonal ß-cells (Glud1KOßCL), and glutamate-oxaloacetate transaminase 1 (GOT1) knockout clonal ß-cells (Got1KOßCL) were studied. Insulin secretion from these cells and islets was examined under various conditions, and intracellular glutamine metabolism was assessed by metabolic flux analysis. Intracellular Ca2+ concentration ([Ca2+ ]i ) was also measured. RESULTS: Glutamine dose-dependently amplified insulin secretion in the presence of high glucose in both MIN6-K8 cells and Glud1KOßCL. Inhibition of glutaminases, the enzymes that convert glutamine to glutamate, dramatically reduced the glutamine-amplifying effect on insulin secretion. A substantial amount of glutamate was produced from glutamine through direct conversion by glutaminases. Glutamine also increased [Ca2+ ]i at high glucose, which was abolished by inhibition of glutaminases. Glutamic acid dimethylester (dm-Glu), a membrane permeable glutamate precursor that is converted to glutamate in cells, increased [Ca2+ ]i as well as induced insulin secretion at high glucose. These effects of glutamine and dm-Glu were dependent on calcium influx. Glutamine also induced insulin secretion in clonal ß-cells MIN6-m14, which otherwise exhibit no insulin secretory response to glucose. CONCLUSIONS: Glutamate converted from glutamine is an essential mediator that enhances calcium signaling in the glutamine-amplifying effect on insulin secretion. Our data also suggest that glutamine exerts a permissive effect on glucose-induced insulin secretion.


Assuntos
Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Aspartato Aminotransferase Citoplasmática , Células Cultivadas , Glucose/metabolismo , Glutamato Desidrogenase , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos , Transdução de Sinais
2.
Am J Physiol Endocrinol Metab ; 316(3): E464-E474, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30562058

RESUMO

In arsenic-endemic regions of the world, arsenic exposure correlates with diabetes mellitus. Multiple animal models of inorganic arsenic (iAs, as As3+) exposure have revealed that iAs-induced glucose intolerance manifests as a result of pancreatic ß-cell dysfunction. To define the mechanisms responsible for this ß-cell defect, the MIN6-K8 mouse ß-cell line was exposed to environmentally relevant doses of iAs. Exposure to 0.1-1 µM iAs for 3 days significantly decreased glucose-induced insulin secretion (GIIS). Serotonin and its precursor, 5-hydroxytryptophan (5-HTP), were both decreased. Supplementation with 5-HTP, which loads the system with bioavailable 5-HTP and serotonin, rescued GIIS, suggesting that recovery of this pathway was sufficient to restore function. Exposure to iAs was accompanied by an increase in mRNA expression of UDP-glucuronosyltransferase 1 family, polypeptide a6a (Ugt1a6a), a phase-II detoxification enzyme that facilitates the disposal of cyclic amines, including serotonin, via glucuronidation. Elevated Ugt1a6a and UGT1A6 expression levels were observed in mouse and human islets, respectively, following 3 days of iAs exposure. Consistent with this finding, the enzymatic rate of serotonin glucuronidation was increased in iAs-exposed cells. Knockdown by siRNA of Ugt1a6a during iAs exposure restored GIIS in MIN6-K8 cells. This effect was prevented by blockade of serotonin biosynthesis, suggesting that the observed iAs-induced increase in Ugt1a6a affects GIIS by targeting serotonin or serotonin-related metabolites. Although it is not yet clear exactly which element(s) of the serotonin pathway is/are most responsible for iAs-induced GIIS dysfunction, this study provides evidence that UGT1A6A, acting on the serotonin pathway, regulates GIIS under both normal and pathological conditions.


Assuntos
5-Hidroxitriptofano/efeitos dos fármacos , Arsênio/farmacologia , Diabetes Mellitus/metabolismo , Glucuronosiltransferase/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Serotonina/metabolismo , 5-Hidroxitriptofano/metabolismo , Adulto , Animais , Linhagem Celular , Feminino , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Mitocôndrias , Consumo de Oxigênio , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo
3.
PLoS One ; 12(11): e0187213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29091932

RESUMO

Incretins (GLP-1 and GIP) potentiate insulin secretion through cAMP signaling in pancreatic ß-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS) that requires two critical processes: 1) generation of cytosolic glutamate through the malate-aspartate (MA) shuttle in glucose metabolism and 2) glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse ß-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1), a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively), which participate in glutamate transport into secretory vesicles. Got1 knockout (KO) ß-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, ß-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO ß-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in ß-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying ß-cells by simultaneous disruption of multiple genes.


Assuntos
Aspartato Aminotransferases/metabolismo , Ácido Glutâmico/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Aspartato Aminotransferases/genética , Linhagem Celular , Secreção de Insulina , Camundongos , Camundongos Knockout , Mutação , Proteínas Vesiculares de Transporte de Glutamato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA