Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Breed ; 44(4): 28, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545461

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a severe disease that affects the yield and quality of wheat. Popularization of resistant cultivars in production is the preferred strategy to control this disease. In the present study, the Chinese wheat breeding line Jimai 809 showed excellent agronomic performance and high resistance to powdery mildew at the whole growth stage. To dissect the genetic basis for this resistance, Jimai 809 was crossed with the susceptible wheat cultivar Junda 159 to produce segregation populations. Genetic analysis showed that a single dominant gene, temporarily designated PmJM809, conferred the resistance to different Bgt isolates. PmJM809 was then mapped on the chromosome arm 2BL and flanked by the markers CISSR02g-1 and CIT02g-13 with genetic distances 0.4 and 0.8 cM, respectively, corresponding to a physical interval of 704.12-708.24 Mb. PmJM809 differed from the reported Pm genes on chromosome arm 2BL in origin, resistance spectrum, physical position and/or genetic diversity of the mapping interval, also suggesting PmJM809 was located on a complex interval with multiple resistance genes. To analyze and screen the candidate gene(s) of PmJM809, six genes related to disease resistance in the candidate interval were evaluated their expression patterns using an additional set of wheat samples and time-course analysis post-inoculation of the Bgt isolate E09. As a result, four genes were speculated as the key candidate or regulatory genes. Considering its comprehensive agronomic traits and resistance findings, PmJM809 was expected to be a valuable gene resource in wheat disease resistance breeding. To efficiently transfer PmJM809 into different genetic backgrounds, 13 of 19 closely linked markers were confirmed to be suitable for marker-assisted selection. Using these markers, a series of wheat breeding lines with harmonious disease resistance and agronomic performance were selected from the crosses of Jimai 809 and several susceptible cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01467-8.

2.
Plant Dis ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173259

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii Coss and 161 emmer wheat accessions were firstly evaluated their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii Coss (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii Coss and only Pm4 alleles were detected in the 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e and Pm2g) in the Ae. tauschii Coss. Further resistant spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele Pm2S was identified in the Ae. tauschii Coss, which contained a 64 bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared to reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was closed to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii Coss background, a diagnostic marker YTU-QS-3 was developed and verified its effectiveness. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.

3.
Biochem Biophys Res Commun ; 696: 149422, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38183795

RESUMO

Identification and functional analysis of key genes regulated by the circadian clock system will provide a comprehensive understanding of the underlying mechanisms through which circadian clock disruption impairs the health of living organisms. The initial phase involved bioinformatics analysis, drawing insights from three RNA-seq datasets (GSE184303, GSE114400, and GSE199061) derived from wild-type mouse liver tissues, which encompassed six distinct time points across a day. As expected, 536 overlapping genes exhibiting rhythmic expression patterns were identified. By intersecting these genes with differentially expressed genes (DEGs) originating from liver RNA-seq data at two representative time points (circadian time, CT: CT2 and CT14) in global Bmal1 knockout mice (Bmal1-/-), hepatocyte-specific Bmal1 knockout mice (L-Bmal1-/-), and their corresponding control groups, 80 genes potentially regulated by BMAL1 (referred to as BMAL1-regulated genes, BRGs) were identified. These genes were significantly enriched in glycolipid metabolism, immune response, and tumorigenesis pathways. Eight BRGs (Nr1d1, Cry1, Gys2, Homer2, Serpina6, Slc2a2, Nmrk1, and Upp2) were selected to validate their expression patterns in both control and L-Bmal1-/- mice livers over 24 h. Real-time quantitative polymerase chain reaction results demonstrated a comprehensive loss of rhythmic expression patterns in the eight selected BRGs in L-Bmal1-/- mice, in contrast to the discernible rhythmic patterns observed in the livers of control mice. Additionally, significant reductions in the expression levels of these selected BRGs, excluding Cry1, were also observed in L-Bmal1-/- mice livers. Chromatin immunoprecipitation (ChIP)-seq (GSE13505 and GSE39860) and JASPAR analyses validated the rhythmic binding of BMAL1 to the promoter and intron regions of these genes. Moreover, the progression of conditions, from basic steatosis to non-alcoholic fatty liver disease, and eventual malignancy, demonstrated a continuous gradual decline in Bmal1 transcripts in the human liver. Combining the aforementioned BRGs with DEGs derived from human liver cancer datasets identified Gys2 and Upp2 as potential node genes bridging the circadian clock system and hepatocellular carcinoma (HCC). In addition, CCK8 and wound healing assays demonstrated that the overexpression of human GYS2 and UPP2 proteins inhibited the proliferation and migration of HepG2 cells, accompanied by elevated expression of p53, a tumor suppressor protein. In summary, this study systematically identified rhythmic genes in the mouse liver, and a subset of circadian genes potentially regulated by BMAL1. Two circadian genes, Gys2 and Upp2, have been proposed and validated as potential candidates for advancing the prevention and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Relógios Circadianos , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Carcinoma Hepatocelular/patologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Regulação da Expressão Gênica , Proteínas de Arcabouço Homer/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Knockout , Uridina Fosforilase/metabolismo , Glicogênio Sintase/metabolismo
4.
Plant Biotechnol J ; 22(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153293

RESUMO

Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.


Assuntos
Ascomicetos , Secale , Secale/genética , Resistência à Doença/genética , Triticum/genética , Proteínas de Repetições Ricas em Leucina , Ascomicetos/fisiologia , Nucleotídeos , Cromossomos de Plantas/genética , Sítios de Ligação , Doenças das Plantas/genética
5.
Int J Biol Macromol ; 251: 126322, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591436

RESUMO

There are significant differences in meat production, growth rate and other traits between Western commercial pigs and Chinese local pigs. Comparative transcriptome approaches have identified many coding and non-coding candidate genes associated various traits. However, the expression and function of circular RNAs (circRNAs) in different pig tissues are largely unknown. In this study, we conducted a comprehensive analysis of the genome-wide circRNA expression profile across ten tissues in Luchuan (a Chinese local breed) and Duroc (a Western commercial breed) pigs. We identified a total of 56,254 circRNAs, of which 42.9 % were not previously annotated. We found that 33.7 % of these circRNAs were differentially expressed. Enrichment analysis revealed that differentially expressed circRNAs might contribute to the phenotypic differentiation between Luchuan and Duroc pigs. We identified 538 tissue-specific circRNAs, most of which were specifically expressed in the brain and skeletal muscle. Competitive endogenous RNA network analysis suggested that skeletal muscle-specific circPSME4 was co-expressed with MYOD1 and targeted by ssc-miR-181d-3p. Functional analysis revealed that circPSME4 knockdown could promote the proliferation and differentiation of myoblasts. Together, our findings provide valuable resources of circRNAs for animal breeding and biomedical research. We demonstrated that circPSME4 is a novel regulator of skeletal muscle development.

6.
Theor Appl Genet ; 136(9): 179, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548696

RESUMO

KEY MESSAGE: Novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance were developed, and the resistance gene PmW6RS was physically mapped onto 6RS-0.58-0.66-bin corresponding to 18.38 Mb in Weining rye. Rye (Secale cereale L., RR) contains valuable genes for wheat improvement. However, most of the rye resistance genes have not been successfully used in wheat cultivars. Identification of new rye resistance genes and transfer of these genes to wheat by developing small fragment translocation lines will make these genes more usable for wheat breeding. In this study, a broad-spectrum powdery mildew resistance gene PmW6RS was localized on rye chromosome arm 6RS using a new set of wheat-rye disomic and telosomic addition lines. To further study and use PmW6RS, 164 wheat-rye 6RS translocation lines were developed by 60Coγ-ray irradiation. Seedling and adult stage powdery mildew resistance analysis showed that 106 of the translocation lines were resistant. A physical map of 6RS was constructed using the 6RS translocation and deletion lines, and PmW6RS was localized in the 6RS-0.58-0.66-bin, flanked by markers X6RS-3 and X6RS-10 corresponding to the physical interval of 50.23-68.61 Mb in Weining rye genome. A total of 23 resistance-related genes were annotated. Nine markers co-segregate with the 6RS-0.58-0.66-bin, which can be used to rapidly trace the 6RS fragment carrying PmW6RS. Small fragment translocation lines with powdery mildew resistance were backcrossed with wheat cultivars, and 39 agronomically acceptable homozygous 6RS small fragment translocation lines were obtained. In conclusion, this study not only provides novel gene source and germplasms for wheat resistance breeding, but also laid a solid foundation for cloning of PmW6RS.


Assuntos
Ascomicetos , Secale , Secale/genética , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Translocação Genética , Doenças das Plantas/genética
7.
Plant Dis ; 107(12): 3801-3809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37272049

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease worldwide. Host resistance is the preferred method for limiting the disease epidemic, protecting the environment, and minimizing economic losses. In the present study, the reactions to powdery mildew for a collection of 600 wheat cultivars and breeding lines from different wheat-growing regions were tested using the Bgt isolate E09. Next, 116 resistant genotypes were identified and then crossed with susceptible wheat cultivars/lines to produce segregating populations for genetic analysis. Among them, 87, 19, and 10 genotypes displayed single, dual, and multiple genic inheritance, respectively. To identify the Pm gene(s) in those resistant genotypes, 16 molecular markers for 13 documented Pm genes were used to test the resistant and susceptible parents and their segregating populations. Of the 87 wheat genotypes that fitted the monogenic inheritance, 75 carried the Pm2a allele. Three, two, one, and two genotypes carried Pm21, Pm6, Pm4, and the recessive genes pm6 and pm42, respectively. Four genotypes did not carry any of the tested genes, suggesting that they might have other uncharacterized or new genes. The other 29 wheat cultivars/lines carried two or more of the tested Pm genes and/or other untested genes, including Pm2, Pm5, Pm6, and/or pm42. It was obvious that Pm2 was widely used in wheat production, whereas Pm1, Pm24, Pm33, Pm34, Pm35, Pm45, and Pm47 were not detected in any of these resistant wheat genotypes. This study clarified the genetic basis of the powdery mildew resistance of these wheat cultivars/lines to provide information for their rational utilization in different wheat-growing regions. Moreover, some wheat genotypes which may have novel Pm gene(s) were mined to enrich the diversity of resistance source.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Erysiphe/genética , Alelos
8.
Plant Dis ; 107(8): 2453-2459, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36724028

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease that seriously threatens wheat yield and quality. To control this disease, host resistance is the preferred measure. However, wheat breeding is a complex process with elusive exchange and recombination of the traits from their parents. Increased resistance often leads to a decline in other key traits, such as yield and quality. Developing breakthrough germplasms with harmonious powdery mildew resistance and other key breeding traits is attractive in wheat breeding. In this study, we developed an ideal wheat breeding line AL46 that pyramided its hexaploid triticale parent-derived desirable yield traits and its wheat parent-derived powdery mildew resistance gene Pm2. Sequential genomic in situ hybridization (GISH), multicolor GISH, multicolor fluorescence in situ hybridization, and molecular marker analyses revealed that AL46 was a wheat-rye T1RS·1BL translocation line. Genetic analysis combined with function marker detection and sequence alignment were used to confirm that AL46 carried the Pm2 gene. Then, we evaluated the powdery mildew resistance and comprehensive traits of AL46, and just as we designed, AL46 showed harmonious powdery mildew resistance with some key breeding traits. This study not only developed an ideal wheat germplasm resource but also provided a successful example for pyramiding breeding, which could be a promising direction for wheat improvement in the future.


Assuntos
Secale , Triticum , Triticum/genética , Hibridização in Situ Fluorescente , Secale/genética , Resistência à Doença/genética , Melhoramento Vegetal , Erysiphe/genética
9.
Plant Dis ; 107(7): 2104-2111, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36541876

RESUMO

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a serious fungal wheat disease of wheat worldwide. Host resistance is considered to be the most environmentally friendly and efficient approach against this disease. Wheat breeding line GR18-1 showed resistance to powdery mildew at both seedling and adult stages for several years. Genetic analysis indicated that a single dominant gene, tentatively designated as PmGR-18, conferred powdery mildew resistance in GR18-1. Bulked segregant analysis and marker analysis showed that PmGR-18 was located in the Pm4 interval on chromosome arm 2AL and was flanked by the markers Xwgrc763 and Xwgrc872, respectively, with genetic distances of 0.5 and 1.0 cM corresponding to a physical interval of 1.13 Mb based on the Chinese Spring reference genome sequence v2.1. Using homology-based cloning and Sanger sequencing, we found that the sequence of PmGR-18 was totally consistent with that of Pm4d. qRT-PCR analysis showed that the expression levels of two splicing variants Pm4d_V1 and Pm4d_V2 in GR18-1 were significantly upregulated after inoculating with Bgt isolate E09, and the level of Pm4d_V2 was significantly lower than that of Pm4d_V1 at most of the time points, suggesting a different resistance pattern may be involved in the genotype. To facilitate the transfer of PmGR-18 in marker-assisted selection (MAS) breeding, the flanked markers Xwgrc763 and Xwgrc872 and the functional marker JS717/JS718 were tested and confirmed to enable the tracking of PmGR-18 when it transferred into those susceptible cultivars.


Assuntos
Resistência à Doença , Triticum , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Marcadores Genéticos , Resistência à Doença/genética , Alelos , Melhoramento Vegetal , Erysiphe/genética
10.
Plant Dis ; 107(2): 450-456, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35815965

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), poses a severe threat to wheat yield and quality worldwide. Rapid identification and the accurate transference of effective resistance genes are important to the development of resistant cultivars and the sustainable control of this disease. In the present study, the wheat line AL11 exhibited high levels of resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the AL11 × 'Shixin 733' mapping population revealed that its resistance was controlled by a single dominant gene, tentatively designated PmAL11. Using bulked segregant RNA-Seq and molecular marker analysis, PmAL11 was mapped to the Pm5 locus on chromosome 7B where it cosegregated with the functional marker Pm5e-KASP. Sequence alignment analysis revealed that the Pm5e-homologous sequence in AL11 was identical to the reported recessive gene Pm5e in wheat landrace 'Fuzhuang 30'. It appears that PmAL11 was most probably Pm5e, but it was mediated by a dominant inheritance pattern, so it should provide a valuable resistance resource for both genetic study and wheat breeding. To efficiently use and trace PmAL11 in breeding, a new kompetitive allele-specific PCR marker AL11-K2488 that cosegregated with this gene was developed and confirmed to be applicable in the different wheat backgrounds, thus promoting its use in the marker-assisted selection of PmAL11.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Mapeamento Cromossômico , Genes Dominantes , Marcadores Genéticos/genética , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/genética , Erysiphe/genética
11.
BMC Plant Biol ; 22(1): 568, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471256

RESUMO

BACKGROUND: Plant height (PH), spike length (SL) and spike compactness (SCN) are important agronomic traits in wheat due to their strong correlations with lodging and yield. Thus, dissection of their genetic basis is essential for the improvement of plant architecture and yield potential in wheat breeding. The objective of this study was to map quantitative trait loci (QTL) for PH, SL and SCN in a recombinant inbred line (RIL) population derived from the cross 'PuBing3228 × Gao8901' (PG-RIL) and to evaluate the potential values of these QTL to improve yield. RESULTS: In the current study, Five, six and ten stable QTL for PH, SL, and SCN, respectively, were identified in at least two individual environments. Five major QTL QPh.cas-5A.3, QPh.cas-6A, QSl.cas-6B.2, QScn.cas-2B.2 and QScn.cas-6B explained 5.58-25.68% of the phenotypic variation. Notably, two, three and three novel stable QTL for PH, SL and SCN were identified in this study, which could provide further insights into the genetic factors that shape PH and spike morphology in wheat. Conditional QTL analysis revealed that QTL for SCN were mainly affected by SL. Moreover, a Kompetitive Allele Specific PCR (KASP) marker tightly linked to stable major QTL QPh.cas-5A.3 was developed and verified using the PG-RIL population and a natural population. CONCLUSIONS: Twenty-one stable QTL related to PH, SL, and SCN were identified. These stable QTL and the user-friendly marker KASP8750 will facilitate future studies involving positional cloning and marker-assisted selection in breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo
12.
Front Plant Sci ; 13: 1048252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388539

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive fungal disease of wheat throughout the world. Utilization of effective powdery mildew resistance genes and cultivars is considered as the most economic, efficient, and environmental-friendly method to control this disease. Synthetic hexaploid wheat (SHW), which was developed through hybridization of diploid Aegilops and tetraploid wheat, is a valuable genetic resource for resistance to powdery mildew. SHW line YAV249 showed high levels of resistance to powdery mildew at both the seedling and adult stages. Genetic analysis indicated that the resistance was controlled by a single dominant gene, temporarily designated PmYAV. Bulked segregant analysis with wheat 660K single nucleotide polymorphism (SNP) array scanning and marker analysis showed that PmYAV was located on chromosome 2AL and flanked by markers Xgdm93 and Xwgrc763, respectively, with genetic distances of 0.8 cM and 1.2 cM corresponding to a physic interval of 1.89 Mb on the Chinese Spring reference genome sequence v1.0. Sequence alignment analysis demonstrated that the sequence of PmYAV was consistent with that of Pm4a but generated an extra splicing event. When inoculated with different Bgt isolates, PmYAV showed a significantly different spectrum from Pm4a, hence it might be a new resistant resource for improvement of powdery mildew resistance. The flanked markers GDM93 and WGRC763, and the co-segregated markers BCD1231 and JS717/JS718 were confirmed to be easily performed in marker-assisted selection (MAS) of PmYAV. Using MAS strategy, PmYAV was transferred into the commercial cultivar Kenong 199 (KN199) and a wheat line YK13 was derived at generation BC3F3 from the population of YAV249/4*KN199 due to its excellent agronomic traits and resistance to powdery mildew. In conclusion, an alternative splicing variant of Pm4 was identified in this study, which informed the regulation of Pm4 gene function.

13.
Front Plant Sci ; 13: 973065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388562

RESUMO

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a destructive disease of wheat throughout the world. Host resistance is considered the most sustainable way to control this disease. Powdery mildew resistance gene Pm2b was mapped to the same genetic interval with Pm2a and PmCH1357 cloned previously, but showed different resistance spectra from them, indicating that they might be caused by different resistance genes or alleles. In this study, Pm2b was delimited to a 1.64 Mb physical interval using a large segregating population containing 4,354 F2:3 families of resistant parent KM2939 and susceptible cultivar Shimai 15. In this interval, TraesCS5D03G0111700 encoding the coiled-coil nucleotide-binding site leucine-rich repeat protein (CC-NBS-LRR) was determined as the candidate gene of Pm2b. Silencing by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) technology and two independent mutants analysis in KM2939 confirmed the candidate gene TraesCS5D03G0111700 was Pm2b. The sequence of Pm2b was consistent with Pm2a/PmCH1357. Subcellular localization showed Pm2b was located on the cell nucleus and plasma membrane. Pm2b had the highest expression level in leaves and was rapidly up-regulated after inoculating with Bgt isolate E09. The yeast two-hybrid (Y2H) and luciferase complementation imaging assays (LCI) showed that PM2b could self-associate through the NB domain. Notably, we identified PM2b interacting with the transcription factor TaWRKY76-D, which depended on the NB domain of PM2b and WRKY domain of TaWRKY76-D. TaWRKY76-D negatively regulated the resistance to powdery mildew in wheat. The specific KASP marker K529 could take the advantage of high-throughput and high-efficiency for detecting Pm2b and be useful in molecular marker assisted-selection breeding. In conclusion, cloning and disease resistance mechanism analysis of Pm2b provided an example to emphasize a need of the molecular isolation of resistance genes, which has implications in marker assisted wheat breeding.

14.
Front Plant Sci ; 13: 1042399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340342

RESUMO

Developing effective and durable host plant resistance is crucial for controlling powdery mildew, a devastating disease caused by Blumeria graminis f. sp. tritici (Bgt). In the present study, we dissected the genetic basis of the adult plant resistance to powdery mildew using a recombinant inbred line (RIL) composed of 176 F9 RILs population derived from a cross between PuBing 3228 (P3228) and susceptible cultivar Gao 8901. P3228 exhibits stable adult-plant resistance to powdery mildew in the field over consecutive years. We identified two QTLs on chromosomes 7DS (QPm.cas-7D) and 1AL (QPm.cas-1A) contributed by P3228, and one QTL on 3DS (QPm.cas-3D) contributed by Gao 8901, which could explain 65.44%, 3.45%, and 2.18% of the phenotypic variances, respectively. By analyzing the annotated genes in the 1.168 Mb physical interval of the major QTL QPm.cas-7D, we locked a previously cloned adult-plant resistance gene Pm38 that was most probably the candidate gene of QPm.cas-7D. Sequence alignment analysis revealed that the candidate gene of QPm.cas-7D in P3228 was identical to the reported Pm38 sequence. Two haplotypes QPm-7D-R and QPm-7D-S were identified in the whole Pm38 genomic regions between P3228 and Gao 8901. To apply QPm.cas-7D in wheat breeding, we developed a kompetitive allele-specific PCR (KASP) marker Kasp5249 that is closely linked with these haplotypes. It is worth mentioning that the QPm-7D-R haplotype significantly decreased TKW and underwent negative selection for higher yields in China wheat breeding. In this study, we identified a major QTL QPm.cas-7D and revealed the relationship between its resistance and yield, which could be beneficial for further applications in wheat disease resistance and high-yield breeding.

15.
Front Plant Sci ; 13: 1005627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147228

RESUMO

Powdery mildew of wheat (Triticum aestivum), caused by Blumeria graminis f.sp. tritici (Bgt), is a destructive disease that seriously threatens the yield and quality of its host. Identifying resistance genes is the most attractive and effective strategy for developing disease-resistant cultivars and controlling this disease. In this study, a wheat breeding line Yannong 99102-06188 (YN99102), an elite derivative line from the same breeding process as the famous wheat cultivar Yannong 999, showed high resistance to powdery mildew at the whole growth stages. Genetic analysis was carried out using Bgt isolate E09 and a population of YN99102 crossed with a susceptible parent Jinhe 13-205 (JH13-205). The result indicated that a single recessive gene, tentatively designated pmYN99102, conferred seedling resistance to the Bgt isolate E09. Using bulked segregant exome capture sequencing (BSE-Seq), pmYN99102 was physically located to a ~33.7 Mb (691.0-724.7 Mb) interval on the chromosome arm 2BL, and this interval was further locked in a 1.5 cM genetic interval using molecular markers, which was aligned to a 9.0 Mb physical interval (699.2-708.2 Mb). Based on the analysis of physical location, origin, resistant spectrum, and inherited pattern, pmYN99102 differed from those of the reported powdery mildew (Pm) resistance genes on 2BL, suggesting pmYN99102 is most likely a new Pm gene/allele in the targeted interval. To transfer pmYN99102 to different genetic backgrounds using marker-assisted selection (MAS), 18 closely linked markers were tested for their availability in different genetic backgrounds for MAS, and all markers expect for YTU103-97 can be used in MAS for tracking pmYN99102 when it transferred into those susceptible cultivars.

16.
Biomater Sci ; 10(15): 4126-4139, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35762682

RESUMO

Inspired by the mussel foot proteins, polydopamine nanoparticles (PDA NPs) are often used to design hydrogel wound dressings due to their strong wet adhesion. However, additional antibiotics or nanometal bactericides are always required to enhance their poor antibacterial activity, which will cause drug resistance and toxic side effects. Herein, self-assembly confined PDA NPs (SC-PDA NPs, <50 nm) are employed as a freestanding antibacterial ingredient for constructing an ideal hydrogel wound dressing, which maintains relatively strong reducibility and size effect. Through a rapid gelation (within 10 s) strategy triggered by electrostatic complexation, an antibacterial hydrogel system is obtained, in which the in situ self-assembly of the SC-PDA NPs continues, endowing the gel with outstanding antibacterial activity, especially against methicillin-resistant Staphylococcus aureus (MRSA, >99.9%). With the continuous in situ self-assembly, the size of the PDA NPs increases (>200 nm), eventually giving the gel an efficient photothermal therapy effect. Moreover, the gel presents a relatively strong wet adhesion (63 kPa), superior biocompatibility and non-immunogenicity. This work offers innovative insights into the antibacterial mechanism of SC-PDA NPs and provides a novel design for constructing safe antibacterial hydrogel wound dressings, demonstrating great potential applications in superbug-infected wound healing.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Hidrogéis/farmacologia , Indóis , Terapia Fototérmica , Polímeros , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
17.
Front Plant Sci ; 13: 889494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646041

RESUMO

Rye (Secale cereale L.), a naturally cross-pollinating relative of wheat, is a tertiary gene donor and of substantial value in wheat improvement. Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), which seriously affects yield and quality worldwide. Identifying and transferring new, effective resistance genes against powdery mildew from rye is important for wheat breeding. The current study developed a wheat-rye line YT2 resistant to powdery mildew by crossing, backcrossing, and self-pollination for multiple generations between octoploid triticale 09R2-100 and common wheat cultivar Shixin 616. YT2 was confirmed to be a 6R disomic addition and T1RS⋅1BL translocation line by genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization (mc-FISH), multicolor-GISH (mc-GISH), and molecular marker analyses. Disease responses to different Bgt isolates and genetic analysis showed that the powdery mildew resistance gene of YT2 was derived from the rye chromosome 6R of 09R2-100, which differed from the previously reported Pm genes from rye including Pm20 on 6RL. Resistance phenotype of different translocation lines and deletion lines derived from YT2 combined with newly developed 6RL-specific markers analysis suggested that the powdery mildew resistance gene of YT2 was localized to the region in chromosome 6RL: 890.09-967.51 Mb and flanked by markers XM189 and X4M19, corresponding to the reference genome of Weining rye. Therefore, YT2 could be used as a promising bridging parent for wheat disease resistance improvement.

18.
Plant Dis ; 106(9): 2433-2440, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35188419

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease of wheat that seriously affects yield and quality worldwide. Because of the extensive growth of wheat cultivars with homogeneous genetic background, exploring novel resistant resources from wheat relatives has become important for increasing the genetic diversity of wheat. Rye (Secale cereale) is a wheat relative possessing abundant resistance genes because of its high variation. Wheat line AL69, resistant to powdery mildew, was developed by crossing, backcrossing, and self-pollination for multiple generations between hexaploid triticale Zhongsi 237 and common wheat cultivar Zimai 17. Through genomic in situ hybridization (GISH) and multicolor fluorescence in situ hybridization (FISH), nondenaturing FISH, multicolor GISH, and selection with specific molecular markers, AL69 was determined to be a wheat-rye 2R (2D) disomic substitution line. Testing with different B. graminis f. sp. tritici isolates and genetic analysis showed that the all-stage resistance (also called seedling resistance) of AL69 was conferred by the cataloged powdery mildew resistance gene Pm4b derived from Zimai 17, and its adult-plant resistance was derived from the alien chromosome 2R of Zhongsi 237, which was found to be different from the previously reported rye-derived Pm genes, including Pm7 on 2RL. In addition, AL69 showed improved spike number per plant, spike length, fertile spikelet number per spike, kernel number per spike, and grain yield per plant compared with its wheat parent Zimai 17. An elite line S251 combining powdery mildew resistance with excellent agronomic performance was selected from the progenies of AL69 and wheat cultivar Jimai 22. Therefore, AL69 has two types of resistance genes to powdery mildew and improved agronomic traits through pyramiding and thus can be used as a promising genetic stock for wheat breeding.


Assuntos
Secale , Triticum , Cromossomos de Plantas/genética , Resistência à Doença/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/genética , Secale/genética , Triticum/genética
19.
Plant Dis ; 105(12): 3900-3908, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34129353

RESUMO

Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici and Puccinia triticina, respectively, are widespread diseases of wheat worldwide. The use of resistant cultivars is considered the most economical, environment-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 wheat accessions (22.1%) were highly resistant to a widely prevalent B. graminis f. sp. tritici isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of B. graminis f. sp. tritici isolates at the adult plant stage. Meanwhile, 63 accessions (2.1%) were highly resistant to leaf rust at the adult plant stage, of which 54 were resistant to a predominant and highly virulent P. triticina race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven powdery mildew genes (Pm genes; Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and 10 Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, whereas Pm24 was not detected. In addition, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant to leaf rust, four leaf rust genes (Lr genes; Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions singly or in combination, whereas six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.


Assuntos
Basidiomycota , Triticum , Genes de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
20.
Plant Dis ; 104(11): 2940-2948, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32897842

RESUMO

Wheat-rye T1RS·1BL translocations have been widely used worldwide in wheat production for multiple disease resistance and superior yield traits. However, many T1RS·1BL translocations have successively lost their resistance to pathogens due to the coevolution of pathogen virulence with host resistance. Because of the extensive variation in rye (Secale cereale L.) as a naturally cross-pollinating relative of wheat, it still has promise to widen the variation of 1RS and to fully realize its application value in wheat improvement. In the present study, the wheat-rye breeding line R2207 was characterized by comprehensive analyses using genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization with multiple probes, multicolor GISH, and molecular marker analysis, and then was proven to be a cytogenetically stable wheat-rye T1RS·1BL translocation line. Based on the disease responses to different isolates of powdery mildew and genetic analysis, R2207 appears to possess a novel variation for resistance, which was confirmed to be located on the rye chromosome arm 1RS. Line R2207 also exhibited high levels of resistance to stripe rust at both seedling and adult stages, as well as enhanced agronomic performance, so it has been transferred into a large number of commercial cultivars using an efficient 1RS-specific kompetitive allele specific PCR marker for marker-assisted selection.


Assuntos
Secale , Triticum , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente , Doenças das Plantas/genética , Secale/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA