Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
ACS Nano ; 18(17): 11084-11102, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632691

RESUMO

Dry eye disease (DED) affects a substantial worldwide population with increasing frequency. Current single-targeting DED management is severely hindered by the existence of an oxidative stress-inflammation vicious cycle and complicated intercellular crosstalk within the ocular microenvironment. Here, a nanozyme-based eye drop, namely nanoceria loading cyclosporin A (Cs@P/CeO2), is developed, which possesses long-term antioxidative and anti-inflammatory capacities due to its regenerative antioxidative activity and sustained release of cyclosporin A (CsA). In vitro studies showed that the dual-functional Cs@P/CeO2 not only inhibits cellular reactive oxygen species production, sequentially maintaining mitochondrial integrity, but also downregulates inflammatory processes and repolarizes macrophages. Moreover, using flow cytometric and single-cell sequencing data, the in vivo therapeutic effect of Cs@P/CeO2 was systemically demonstrated, which rebalances the immune-epithelial communication in the corneal microenvironment with less inflammatory macrophage polarization, restrained oxidative stress, and enhanced epithelium regeneration. Collectively, our data proved that the antioxidative and anti-inflammatory Cs@P/CeO2 may provide therapeutic insights into DED management.


Assuntos
Cério , Ciclosporina , Síndromes do Olho Seco , Cério/química , Cério/farmacologia , Ciclosporina/farmacologia , Ciclosporina/administração & dosagem , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/patologia , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Sistemas de Liberação de Medicamentos
2.
Adv Sci (Weinh) ; 11(16): e2308077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403462

RESUMO

The foreign body response (FBR) to implanted biomaterials and biomedical devices can severely impede their functionality and even lead to failure. The discovery of effective anti-FBR materials remains a formidable challenge. Inspire by the enrichment of glutamic acid (E) and lysine (K) residues on human protein surfaces, a class of zwitterionic polypeptide (ZIP) hydrogels with alternating E and K sequences to mitigate the FBR is prepared. When subcutaneously implanted, the ZIP hydrogels caused minimal inflammation after 2 weeks and no obvious collagen capsulation after 6 months in mice. Importantly, these hydrogels effectively resisted the FBR in non-human primate models for at least 2 months. In addition, the enzymatic degradability of the gel can be controlled by adjusting the crosslinking degree or the optical isomerism of amino acid monomers. The long-term FBR resistance and controlled degradability of ZIP hydrogels open up new possibilities for a broad range of biomedical applications.


Assuntos
Reação a Corpo Estranho , Hidrogéis , Animais , Hidrogéis/química , Camundongos , Materiais Biocompatíveis/química , Lisina/química , Primatas , Roedores , Ácido Poliglutâmico/química
3.
Adv Ophthalmol Pract Res ; 4(1): 23-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356795

RESUMO

Background: Dry eye disease (DED) is a commonly reported ocular complaint that has garnered significant attention in recent research. The global occurrence of DED ranges from 5% to 50%, impacting a substantial proportion of individuals worldwide with increasing frequency. Although topical administration remains the mainstream drug delivery method for ocular diseases, it suffers from drawbacks such as low bioavailability, rapid drug metabolism, and frequent administration requirements. Fortunately, the advancements in nanomedicine offer effective solutions to address the aforementioned issues and provide significant assistance in the treatment of DED. Main text: DED is considered a multifactorial disease of the ocular surface and tear film, in which the integrity of tear film function and structure plays a crucial role in maintaining the homeostasis of the ocular surface. The conventional treatment for DED involves the utilization of artificial tear products, cyclosporin, corticosteroids, mucin secretagogues, and nonsteroidal anti-inflammatory drugs. Furthermore, nanomedicine is presently a significant field of study, with numerous clinical trials underway for various nanotherapeutics including nanoemulsions, nanosuspensions, liposomes, and micelles. Notably, some of these innovative nanoformulations have already received FDA approval as novel remedies for DED, and the advancement of nanomedicine is poised to offer enhanced prospects to solve the shortcomings of existing treatments for DED partially. Conclusions: This article provides an overview of the latest advancements in nanomedicine for DED treatment, while the field of DED treatment is expected to witness a remarkable breakthrough shortly with the development of nanomedicine, bringing promising prospects for patients worldwide suffering conditions.

4.
Adv Healthc Mater ; : e2304626, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38406994

RESUMO

As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.

5.
Biomed J ; 47(1): 100592, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37004870

RESUMO

BACKGROUND: To overcome the drawbacks of traditional therapy for corneal neovascularization (CNV), we evaluated the efficacy of polyethylene glycol (PEG)-conjugated Ala-Pro-Arg-Pro-Gly (APRPG) peptide modified dexamethasone (Dex), a novel nano-prodrug (Dex-PEG-APRPG, DPA). METHODS: Characterization of DPA nano-prodrug were measured with transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses. Cytotoxicity and effects on cell migration and tube formation of DPA were evaluated in vitro. A murine CNV model was established by cornea alkali burn. The injured corneas were given eye drops of DPA (0.2 mM), Dex solution (0.2 mM), Dexp (2 mM), or normal saline three times a day. After two weeks, eyes were obtained for the analysis of histopathology, immunostaining, and mRNA expression. RESULTS: DPA with an average diameter of 30 nm, presented little cytotoxicity and had good ocular biocompatibility. More importantly, DPA showed specific targeting to vascular endothelial cells with efficient inhibition on cell migration and tube formation. In a mouse CNV model, clinical, histological, and immunohistochemical examination results revealed DPA had a much stronger angiogenesis suppression than Dex, resembling a clinical drug with an order of magnitude higher concentration. This was ascribed to the significant downregulations in the expression of pro-angiogenic and pro-inflammatory factors in the corneas. In vivo imaging results also demonstrated that APRPG could prolong ocular retention time. CONCLUSIONS: This study suggests that DPA nano-prodrug occupies advantages of specific targeting ability and improved bioavailability over conventional therapy, and holds great potential for safe and efficient CNV therapy.


Assuntos
Neovascularização da Córnea , Pró-Fármacos , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Células Endoteliais , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Neovascularização Patológica/tratamento farmacológico
6.
J Control Release ; 365: 521-529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040342

RESUMO

Changing positions of amino acid residues in the peptide sequence alters the peptide' s assembly behaviors, affording various nanostructures. However, it remains elusive that how subtle changes in the peptide sequence influence the in vivo bioactivity of peptide-based nanocarriers, further impacting the efficacy of the encapsulated drugs. We report here a class of isomeric pentapeptide amphiphiles that associate into filaments with different dimensions, which were further used as carriers of Diquafosol tetrasodium (DQS), for the treatment of dry eye disease. Our results suggest that subtle changes in peptide sequences resulted in dramatically different molecular packings and distinct morphologies, which were verified by molecular dynamics simulations. In vivo results show that the drug retention time could be prolonged by the peptidic nanostructures on the ocular surface but were highly morphological-dependent. The longer retention time promised better therapeutic efficacy. In terms of facile synthesis and good biocompatibility, we believe that these peptides could be used for eye disease treatments or other related areas.


Assuntos
Síndromes do Olho Seco , Nanoestruturas , Humanos , Síndromes do Olho Seco/tratamento farmacológico , Olho/metabolismo , Peptídeos/química , Nanoestruturas/química , Sequência de Aminoácidos , Soluções Oftálmicas
7.
Adv Healthc Mater ; 13(5): e2302889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988231

RESUMO

Corneal injury-induced stromal scarring causes the most common subtype of corneal blindness, and there is an unmet need to promote scarless corneal wound healing. Herein, a biomimetic corneal stroma with immunomodulatory properties is bioengineered for scarless corneal defect repair. First, a fully defined serum-free system is established to derive stromal keratocytes (hAESC-SKs) from a current Good Manufacturing Practice (cGMP)-grade human amniotic epithelial stem cells (hAESCs), and RNA-seq is used to validate the phenotypic transition. Moreover, hAESC-SKs are shown to possess robust immunomodulatory properties in addition to the keratocyte phenotype. Inspired by the corneal stromal extracellular matrix (ECM), a photocurable gelatin-based hydrogel is fabricated to serve as a scaffold for hAESC-SKs for bioengineering of a biomimetic corneal stroma. The rabbit corneal defect model is used to confirm that this biomimetic corneal stroma rapidly restores the corneal structure, and effectively reshapes the tissue microenvironment via proteoglycan secretion to promote transparency and inhibition of the inflammatory cascade to alleviate fibrosis, which synergistically reduces scar formation by ≈75% in addition to promoting wound healing. Overall, the strategy proposed here provides a promising solution for scarless corneal defect repair.


Assuntos
Lesões da Córnea , Substância Própria , Animais , Humanos , Coelhos , Biomimética , Córnea , Lesões da Córnea/terapia , Lesões da Córnea/patologia , Cicatriz/patologia
8.
Small ; 19(43): e2302578, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376855

RESUMO

Transition metal ions are served as disinfectant thousand years ago. However, the in vivo antibacterial application of metal ions is strongly restricted due to its high affinity with proteins and lack of appropriate bacterial targeting method. Herein, for the first time, Zn2+ -gallic acid nanoflowers (ZGNFs) are synthesized by a facile one-pot method without additional stabilizing agents. ZGNFs are stable in aqueous solution while can be easily decomposed in acidic environments. Besides, ZGNFs can specifically adhere onto Gram-positive bacteria, which is mediated by the interaction of quinone from ZGNFs and amino groups from teichoic acid of Gram-positive bacteria. ZGNFs exhibit high bactericidal effect toward various Gram-positive bacteria in multiple environments, which can be ascribed to the in situ Zn2+ release on bacterial surface. Transcriptome studies reveal that ZGNFs can disorder basic metabolic processes of Methicillin-resistant Staphylococcus aureus (MRSA). Moreover, in a MRSA-induced keratitis model, ZGNFs exhibit long-term retention in the infected corneal site and prominent MRSA elimination efficacy due to the self-targeting ability. This research not only reports an innovative method to prepare metal-polyphenol nanoparticles, but also provides a novel nanoplatform for targeted delivery of Zn2+ in combating Gram-positive bacterial infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Positivas , Íons , Zinco/farmacologia , Testes de Sensibilidade Microbiana
9.
Adv Drug Deliv Rev ; 196: 114770, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36894134

RESUMO

Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.


Assuntos
Portadores de Fármacos , Nanopartículas , Humanos , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Olho , Lipídeos
10.
Bioeng Transl Med ; 8(1): e10380, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684079

RESUMO

Bacterial keratitis can lead to intraocular infection and even blindness without prompt and potent treatments. Currently, clinical abuse of antibiotics encouraged the evolution of resistant bacteria. Conventional antibiotic eye drops based keratitis treatment has been heavily restricted due to the lack of bactericidal efficiency and easy induction of bacterial resistance. Hence, developing an effective treatment strategy for bacterial keratitis is of great significance. In this work, we investigated ε-poly-l-lysine (EPL)-modified polydopamine (PDA) nanoparticles (EPL@PDA NPs)-mediated antibacterial photothermal therapy (aPTT), to cope with methicillin-resistant Staphylococcus aureus (MRSA)-induced keratitis. The surface modification of cationic peptide EPL enables EPL@PDA NPs to specifically target negatively charged MRSA and induces local hyperthermia to kill the bacteria under low ambient temperature. Under near-infrared (NIR) irradiation, the sterilization efficiency of EPL@PDA NPs suspension for MRSA in vitro was up to 99.96%. The EPL@PDA-mediated aPTT presented potent antibacterial efficacy in treating MRSA-induced keratitis with little corneal epithelial cytotoxicity and good biocompatibility. In conclusion, the bacterial-targeting aPTT platform in this work provides a prospective method for the management of MRSA-induced refractory bacterial keratitis.

11.
Bioact Mater ; 20: 271-285, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35702608

RESUMO

Postoperative endophthalmitis (POE) has been the most threatening complication after cataract surgery, which perhaps can be solved by the antibiotic-loaded intraocular lens (IOL). However, most drug-loaded IOLs demonstrate insufficient drug quantity, short release time, increased implantation-related difficulties or other noticeable drawbacks. To prevent POE and to address these deficiencies, a drug-loaded copolymer IOL, prepared from poly (urethane acrylate) prepolymer, isobornyl methacrylate (IBOMA), N-vinyl-2-pyrrolidone (NVP), Irgacure 819, RUVA-93, and gatifloxacin (GAT), was rapidly fabricated via photocuring and by using a 3D-printed mold. This composite displayed an outstanding and controllable GAT release behavior in vitro, a high light transmittance, and a moderate refractive index. Also, it demonstrated improved strain stress and elongation compared with the reference commercial acrylic IOL material. In vivo tests demonstrated satisfying released drug concentration at the early treatment stage. In vitro and in vivo studies further confirmed the remarkable bacterial inhibition and prevention of POE by the proposed IOL, which also displayed good biocompatibility. These findings suggested that the GAT-loaded IOL could be a promising implant to prevent and cure POE, also the proposed methods could inspire more designs for various medical applications.

12.
Bioact Mater ; 23: 539-550, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36514385

RESUMO

Posterior capsule opacification (PCO) is the most common long-term postoperative complication of cataract surgery, leading to secondary vision loss. Optimized intraocular lens (IOL) structure and appropriate pharmacological intervention, which provides physical barriers and biological inhibition, respectively, can block the migration, proliferation, and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) for PCO prophylaxis. Herein, a novel indomethacin-eluting IOL (INDOM-IOL) with an optimized sharper edge and a sustained drug release behavior was developed for PCO prevention. Indomethacin (INDOM), an ophthalmic non-steroidal anti-inflammatory drug (NSAID) used for postoperative ocular inflammation, was demonstrated to not only be able to suppress cell migration and down-regulate the expression of cyclooxygenase-2 (COX-2) and EMT markers, including alpha-smooth muscle actin (α-SMA) and cyclin D1, but also promote the autophagy activation in LECs. Additionally, autophagy was also verified to be a potential therapeutic target for the down-regulation of EMT in LECs. The novel IOL, serving as a drug delivery platform, could carry an adjustable dose of hydrophobic indomethacin with sustained drug release ability for more than 28 days. In the rabbit PCO model, the indomethacin-eluting IOL showed excellent anti-inflammatory and anti-PCO effects. In summary, indomethacin is an effective pharmacological intervention in PCO prophylaxis, and the novel IOL we developed prevented PCO in vivo under its sustained indomethacin release property, which provided a promising approach for PCO prophylaxis in clinical application.

13.
ACS Appl Mater Interfaces ; 14(38): 43987-44001, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36102779

RESUMO

Orbital bone damage (OBD) may result in severe post-traumatic enophthalmos, craniomaxillofacial deformities, vision loss, and intracranial infections. However, it is still a challenge to fabricate advanced biomaterials that can match the individual anatomical structure and enhance OBD repair in situ. Herein, we aimed to develop a selective surface modification strategy on bioceramic scaffolds and evaluated the effects of inorganic or organic functional coating on angiogenesis and osteogenesis, ectopically and orthotopically in OBD models. It was shown that the low thermal bioactive glass (BG) modification or layer-by-layer assembly of a biomimetic hydrogel (Biogel) could readily integrate into the pore wall of the bioceramic scaffolds. The BG and Biogel modification showed appreciable enhancement in the initial compressive strength (∼30-75%) or structural stability in vivo, respectively. BG modification could enhance by nearly 2-fold the vessel ingrowth, and the osteogenic capacity was also accelerated, accompanied with a mild scaffold biodegradation after 3 months. Meanwhile, the Biogel-modified scaffolds showed enhanced osteogenic differentiation and mineralization through calcium and phosphorus retention. The potential mechanism of the enhanced bone repair was elucidated via vascular and osteogenic cell responses in vitro, and the cell tests indicated that the Biogel and BG functional layers were both beneficial for in vitro osteoblastic differentiation and mineralization on bioceramics. Totally, these findings demonstrated that the bioactive ions or biomolecules could significantly improve the angiogenic and osteogenic capabilities of conventional bioceramics, and the integration of inorganic or organic functional coating in the pore wall is a highly flexible material toolbox that can be tailored directly to improve orbital bone defect repair.


Assuntos
Cálcio , Osteogênese , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Cálcio/farmacologia , Hidrogéis/farmacologia , Íons , Fósforo/farmacologia , Alicerces Teciduais/química
14.
Bioeng Transl Med ; 7(2): e10276, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600640

RESUMO

Alkali burn is a potentially blinding corneal injury. During the progression of alkali burn-induced injury, overwhelmed oxidative stress in the cornea triggers cell damage, including oxidative changes in cellular macromolecules and lipid peroxidation in membranes, leading to impaired corneal transparency, decreased vision, or even blindness. In this study, we identified that ferroptosis, a type of lipid peroxidation-dependent cell death, mediated alkali burn-induced corneal injury. Ferroptosis-targeting therapy protected the cornea from cell damage and neovascularization. However, the specific ferroptosis inhibitor ferrostatin-1 (Fer-1) is hydrophobic and cannot be directly applied in the clinic. Therefore, we developed Fer-1-loaded liposomes (Fer-1-NPs) to improve the bioavailability of Fer-1. Our study demonstrated that Fer-1-NPs exerted remarkable curative effects regarding corneal opacity and neovascularization in vivo. The efficacy was comparable to that of dexamethasone, but without appreciable side effects. The significant suppression of ferroptosis (induced by lipid peroxidation and mitochondria disruption), inflammation, and neovascularization might be the mechanisms underlying the therapeutic effect of Fer-1-NPs. Moreover, the Fer-1-NPs treatment showed no signs of cytotoxicity, hematologic toxicity, or visceral organ damage, which further confirmed the biocompatibility. Overall, Fer-1-NPs provide a new prospect for safe and effective therapy for corneal alkali burn.

15.
Adv Sci (Weinh) ; 9(17): e2200435, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435328

RESUMO

Dry eye disease (DED) impacts ≈30% of the world's population and causes serious ocular discomfort and even visual impairment. Inflammation is one core cause of the DED vicious cycle, a multifactorial deterioration in DED process. However, there are also reactive oxygen species (ROS) regulating inflammation and other points in the cycle from the upstream, leading to treatment failure of current therapies merely targeting inflammation. Accordingly, the authors develop micelle-based eye drops (more specifically p38 mitogen-activated protein kinases (MAPK) inhibitor Losmapimod (Los)-loaded and ROS scavenger Tempo (Tem)-conjugated cationic polypeptide micelles, designated as MTem/Los) for safe and efficient DED management. Cationic MTem/Los improve ocular retention of conjugated water-soluble Tem and loaded water-insoluble Los via electrostatic interaction with negatively charged mucin on the cornea, enabling an increase in therapeutic efficiency and a decrease in dosing frequency. Mechanistically, MTem/Los effectively decrease ROS over-production, reduce the expression of proinflammatory cytokines and chemokines, restrain macrophage proinflammatory phenotypic transformation, and inhibit cell apoptosis. Therapeutically, the dual-functional MTem/Los suppress the inflammatory response, reverse corneal epithelial defect, save goblet cell dysfunction, and recover tear secretion, thus breaking the vicious cycle and alleviating the DED. Moreover, MTem/Los exhibit excellent biocompatibility and tolerability for potential application as a simple and rapid treatment of oxidative stress- and inflammation-induced disorders, including DED.


Assuntos
Síndromes do Olho Seco , Micelas , Anti-Inflamatórios/uso terapêutico , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/metabolismo , Humanos , Inflamação , Espécies Reativas de Oxigênio/metabolismo , Água
16.
Asian J Pharm Sci ; 17(1): 35-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35261643

RESUMO

Gemcitabine has been extensively applied in treating various solid tumors. Nonetheless, the clinical performance of gemcitabine is severely restricted by its unsatisfactory pharmacokinetic parameters and easy deactivation mainly because of its rapid deamination, deficiencies in deoxycytidine kinase (DCK), and alterations in nucleoside transporter. On this account, repeated injections with a high concentration of gemcitabine are adopted, leading to severe systemic toxicity to healthy cells. Accordingly, it is highly crucial to fabricate efficient gemcitabine delivery systems to obtain improved therapeutic efficacy of gemcitabine. A large number of gemcitabine pro-drugs were synthesized by chemical modification of gemcitabine to improve its biostability and bioavailability. Besides, gemcitabine-loaded nano-drugs were prepared to improve the delivery efficiency. In this review article, we introduced different strategies for improving the therapeutic performance of gemcitabine by the fabrication of pro-drugs and nano-drugs. We hope this review will provide new insight into the rational design of gemcitabine-based delivery strategies for enhanced cancer therapy.

17.
Bioact Mater ; 9: 343-357, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820575

RESUMO

Cataract is the leading cause of visual impairment, and posterior capsular opacification (PCO) is the most common long-term complication of modern cataract surgery, which can cause severe visual impairment after surgery. The proliferation, migration, and epithelial-mesenchymal transition (EMT) of residual lens epithelial cells (LECs) stimulated by growth factors and cytokines, are the key pathological mechanisms involved in the development of PCO. This study demonstrated that non-steroidal anti-inflammatory drug (NSAID), bromfenac, was capable of effectively inhibiting cell migration, overexpression of EMT markers, such as fibronectin (FN), matrix metalloproteinase 2 (MMP2), α-smooth muscle actin (α-SMA), and transcription factor Snail, and extracellular signal-regulated kinase (ERK)/glycogen synthase kinase-3ß (GSK-3ß) signaling induced by transforming growth factor-ß2 (TGF-ß2) in vitro. The inhibitory effect of bromfenac on TGF-ß2-induced EMT was also verified on a primary lens epithelial cell model using human anterior capsules. Furthermore, based on ultrasonic spray technology, we developed a drug-eluting intraocular lens (IOL) using poly (lactic-co-glycolic acid) (PLGA) with sustained bromfenac release ability for the prevention of PCO development. In the rabbit models of cataract surgery, bromfenac-eluting IOL exhibited remarkable PCO prevention and inflammation suppression effects with excellent biocompatibility. In conclusion, bromfenac can inhibit TGF-ß2-induced cell migration and the EMT of LECs via ERK/GSK-3ß/Snail signaling. The present study offers a novel approach for preventing PCO through PLGA-based drug sustained-release IOLs.

18.
Biomaterials ; 280: 121320, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923312

RESUMO

Corneal damage forms scar tissue and manifests as permanent corneal opacity, which is the main cause of visual impairment caused by corneal diseases. To treat these diseases, herein, we developed a novel approach based on the exosome derived from induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) combined with a thermosensitive hydrogel, which reduces scar formation and accelerates the healing process. We found that a thermosensitive chitosan-based hydrogels (CHI hydrogel) sustained-release iPSC-MSC exosomes can effectively promote the repair of damaged corneal epithelium and stromal layer, downregulating mRNA expression coding for the three most enriched collagens (collagen type I alpha 1, collagen type V alpha 1 and collagen type V alpha 2) in corneal stroma and reducing scar formation in vivo. Furthermore, iPSC-MSCs secrete exosomes that contain miR-432-5p, which suppresses translocation-associated membrane protein 2 (TRAM2), a vital modulator of the collagen biosynthesis in the corneal stromal stem cells to avert the deposition of extracellular matrix (ECM). Our findings indicate that iPSC-MSCs secrete miRNA-containing exosomes to promote corneal epithelium and stroma regeneration, and that miR-432-5p can prevent ECM deposition via a mechanism most probably linked to direct repression of its target gene TRAM2. Overall, our exosomes-based thermosensitive CHI hydrogel, is a promising technology for clinical therapy of various corneal diseases.


Assuntos
Epitélio Corneano , Exossomos , Células-Tronco Mesenquimais , Cicatriz/metabolismo , Substância Própria , Exossomos/metabolismo , Humanos , Hidrogéis/farmacologia , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regeneração
19.
Front Bioeng Biotechnol ; 9: 753879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765592

RESUMO

Corneal wound involves a series of complex and coordinated physiological processes, leading to persistent epithelial defects and opacification. An obstacle in the treatment of ocular diseases is poor drug delivery and maintenance. In this study, we constructed a Wnt/ß-catenin pathway inhibitor, XAV939-loaded liposome (XAV939 NPs), and revealed its anti-inflammatory and antiangiogenic effects. The XAV939 NPs possessed excellent biocompatibility in corneal epithelial cells and mouse corneas. In vitro corneal wound healing assays demonstrated their antiangiogenic effect, and LPS-induced expressions of pro-inflammatory genes of IL-1ß, IL-6, and IL-17α were significantly suppressed by XAV939 NPs. In addition, the XAV939 NPs significantly ameliorated alkali-burned corneas with slight corneal opacity, reduced neovascularization, and faster recovery, which were attributed to the decreased gene expressions of angiogenic and inflammatory cytokines. The findings supported the potential of XAV939 NPs in ameliorating corneal wound and suppressing neovascularization, providing evidence for their clinical application in ocular vascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA