Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Chem ; 110: 108071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718497

RESUMO

Incomplete data presents significant challenges in drug sensitivity analysis, especially in critical areas like oncology, where precision is paramount. Our study introduces an innovative imputation method designed specifically for low-rank matrices, addressing the crucial challenge of data completion in anticancer drug sensitivity testing. Our method unfolds in two main stages: Initially, the singular value thresholding algorithm is employed for preliminary matrix completion, establishing a solid foundation for subsequent steps. Then, the matrix rows are segmented into distinct blocks based on hierarchical clustering of correlation coefficients, applying singular value thresholding to the largest block, which has been proved to possess the largest entropy. This is followed by a refined data restoration process, where the reconstructed largest block is integrated into the initial matrix completion to achieve the final matrix completion. Compared to other methods, our approach not only improves the accuracy of data restoration but also ensures the integrity and reliability of the imputed values, establishing it as a robust tool for future drug sensitivity analysis.


Assuntos
Algoritmos , Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais
2.
Med Image Anal ; 94: 103109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387243

RESUMO

In computational pathology, multiple instance learning (MIL) is widely used to circumvent the computational impasse in giga-pixel whole slide image (WSI) analysis. It usually consists of two stages: patch-level feature extraction and slide-level aggregation. Recently, pretrained models or self-supervised learning have been used to extract patch features, but they suffer from low effectiveness or inefficiency due to overlooking the task-specific supervision provided by slide labels. Here we propose a weakly-supervised Label-Efficient WSI Screening method, dubbed LESS, for cytological WSI analysis with only slide-level labels, which can be effectively applied to small datasets. First, we suggest using variational positive-unlabeled (VPU) learning to uncover hidden labels of both benign and malignant patches. We provide appropriate supervision by using slide-level labels to improve the learning of patch-level features. Next, we take into account the sparse and random arrangement of cells in cytological WSIs. To address this, we propose a strategy to crop patches at multiple scales and utilize a cross-attention vision transformer (CrossViT) to combine information from different scales for WSI classification. The combination of our two steps achieves task-alignment, improving effectiveness and efficiency. We validate the proposed label-efficient method on a urine cytology WSI dataset encompassing 130 samples (13,000 patches) and a breast cytology dataset FNAC 2019 with 212 samples (21,200 patches). The experiment shows that the proposed LESS reaches 84.79%, 85.43%, 91.79% and 78.30% on the urine cytology WSI dataset, and 96.88%, 96.86%, 98.95%, 97.06% on the breast cytology high-resolution-image dataset in terms of accuracy, AUC, sensitivity and specificity. It outperforms state-of-the-art MIL methods on pathology WSIs and realizes automatic cytological WSI cancer screening.


Assuntos
Mama , Processamento de Imagem Assistida por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA