Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1333816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633458

RESUMO

Low temperatures decrease the thidiazuron (TDZ) defoliation efficiency in cotton, while cyclanilide (CYC) combined with TDZ can improve the defoliation efficiency at low temperatures, but the mechanism is unknown. This study analyzed the effect of exogenous TDZ and CYC application on cotton leaf abscissions at low temperatures (daily mean temperature: 15°C) using physiology and transcriptomic analysis. The results showed that compared with the TDZ treatment, TDZ combined with CYC accelerated cotton leaf abscission and increased the defoliation rate at low temperatures. The differentially expressed genes (DEGs) in cotton abscission zones (AZs) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the TDZ treatment and TDZ combined with CYC treatment. TDZ combined with CYC could induce more DEGs in cotton leaf AZs at low temperatures, and these DEGs were related to plant hormone and reactive oxygen species (ROS) pathways. CYC is an auxin transport inhibitor. TDZ combined with CYC not only downregulated more auxin response related genes but also upregulated more ethylene and jasmonic acid (JA) response related genes at low temperatures, and it decreased the indole-3-acetic acid (IAA) content and increased the JA and 1-aminocyclopropane-1-carboxylic acid (ACC) contents, which enhanced cotton defoliation. In addition, compared with the TDZ treatment alone, TDZ combined with CYC upregulated the expression of respiratory burst oxidase homologs (RBOH) genes and the hydrogen peroxide content in cotton AZs at low temperatures, which accelerated cotton defoliation. These results indicated that CYC enhanced the TDZ defoliation efficiency in cotton by adjusting hormone synthesis and response related pathways (including auxin, ethylene, and JA) and ROS production at low temperatures.

2.
Antioxidants (Basel) ; 12(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136218

RESUMO

Manipulating dietary nutrients, especially protein fractions, holds significance in enhancing the antioxidant capacity and immunity function of ruminants. This study investigated the impact of dietary adjustments in soluble protein (SP) levels, in conjunction with a reduction in crude protein (CP) content, on the antioxidant capacity, inflammatory response, carcass characteristics, and meat quality of sheep. This study had four dietary treatments, including a control diet (CON) adhering to NRC standards with a CP content of 16.7% on a dry matter basis and three diets with an approximately 10% reduction in CP content compared to CON with SP levels (% of CP) of 21.2 (SPA), 25.9 (SPB) and 29.4% (SPC), respectively. Thirty-two healthy male Hu sheep, with an initial live weight of 40.37 ± 1.18 kg and age of 6 months, were randomly divided into four groups to receive these respective diets. Our data revealed no significant differences in slaughter performance among treatments (p > 0.05), although low-protein treatments decreased the stomachus compositus index (p < 0.05). Compared with CON, as SP was adjusted to 21.2%, total antioxidant capacity (T-AOC) and catalase (CAT) concentrations were decreased in the serum (p < 0.05), glutathione peroxidase (GSH-Px) content was decreased in jejunum and ileum (p < 0.05), superoxide dismutase (SOD) concentration was reduced in the duodenum (p < 0.05), and malondialdehyde (MDA) content was increased in spleen and ileum (p < 0.05). On the other hand, pro-inflammatory cytokine (IL-1ß, IL-6 and IL-8) contents were upregulated in the serum (p < 0.05), while immunoglobulin (IgA and IgM) contents were reduced in the duodenum (p < 0.05) with SP adjustments. Additionally, the SPB and SPC diets reduced the content of saturated fatty acids and increased the content of polyunsaturated fatty acids compared with CON (p < 0.05), along with retention in the tenderness and water-holding capacity of the longissimus lumborum muscle. In summary, reducing CP by 10% with an SP proportion of ~25-30% improved meat quality without compromising antioxidant capacity and immunity function, while lower SP levels had adverse effects.

3.
Front Plant Sci ; 12: 763525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126408

RESUMO

Excessive fertilization, low nutrient utilization rate, and continuous deterioration of cotton field environment have adversely affected the sustainable development of cotton in Xinjiang province of China. To overcome these issues, we hypothesized that an appropriate combination of liquid organic fertilizer and chemical fertilizer (CF) would effectively reduce the input of CF without sacrificing the quality and yield of cotton. A 2-year field experiment explores the effects of three fertilization treatments on the growth, biomass accumulation, and yield of cotton. The three fertilization treatments, namely, no application of fertilizer (CK), the single application of CF, and the combined application of organic liquid fertilizer and CF (F0.6-F1.4), were set up in five ratios. Compared with CF treatment, the combined application of organic liquid fertilizer and CF treatments (F0.6-F1.2) speeded the growth period of cotton by 2-7 days with increased plant height, stem diameter, functional leaf width, and more number of branches, with 9.7-23.5 and 8.4-28.5% higher total plant biomass (TPB) and reproductive organs biomass (ROB), respectively. Compared with CF treatment, the rapid growth duration and maximum accumulation rate of reproductive organs were the highest in F0.8 treatment, with an average increase of 4.6 days and 20.3%. Increment in biomass accumulation contributed to an average increase of 21.8 and 18.9% in cotton boll number and yield, respectively, under F0.8 treatment. Principal component analysis shows that the total biomass, ROB, and total bolls per unit area were positively correlated with the yield, while stem diameter and vegetative organ biomass are negatively correlated with the yield. In conclusion, under film mulching with drip irrigation, organic liquid fertilizer combined with CF reduced by 20% (F0.8 treatment: N, P2O5, and K2O were 182, 104, and 76 kg hm-2, respectively) can sustain the normal growth, promote the accumulation rate of ROB, and lead to efficient cotton production.

4.
Sci Rep ; 7(1): 17168, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215075

RESUMO

Cotton is a major cash crop grown worldwide primarily for fiber and oil seed. As the most important cultural practices for cotton production, single pre-plant irrigation and basal fertilization for cotton plant growth and yield are well documented, but their coupling effects are poorly understood in arid regions. A 2-year outdoor pot trial was conducted to unravel the effects of pre-plant irrigation and basal fertilization on leaf area, root growth, biomass accumulation, and capacity of leaf area and root in cotton plant. Two pre-plant irrigations (i.e., W80, well-watered and W0, not watered) and two basal dressing fertilizations (F10, surface application and F30, deep application) were used in the experiments. The aboveground and reproductive biomass were highest in W80F10 after 69 days after emergence. Furthermore, W80F10 increased the root length in the 0-40 cm soil layer and the leaf area and improved the loading boll capacity of the effective root length and leaf area. The effective root length and leaf area had substantial direct effects on the aboveground and root biomass, respectively. Our data suggest that basal fertilizer surface application under adequate pre-plant irrigation is an effective strategy for optimal cotton production, which improves the coordination of water-nutrient absorption and photosynthetic areas and promotes assimilated distribution to the reproductive structures.


Assuntos
Irrigação Agrícola/métodos , Biomassa , Fertilizantes , Gossypium/crescimento & desenvolvimento , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fotossíntese , Água/metabolismo
5.
Plant Biotechnol J ; 15(12): 1520-1532, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28371164

RESUMO

Verticillium wilt (VW), caused by infection by Verticillium dahliae, is considered one of the most yield-limiting diseases in cotton. To examine the genetic architecture of cotton VW resistance, we performed a genome-wide association study (GWAS) using a panel of 299 accessions and 85 630 single nucleotide polymorphisms (SNPs) detected using the specific-locus amplified fragment sequencing (SLAF-seq) approach. Trait-SNP association analysis detected a total of 17 significant SNPs at P < 1.17 × 10-5 (P = 1/85 630, -log10 P = 4.93); the peaks of SNPs associated with VW resistance on A10 were continuous and common in three environments (RDIG2015, RDIF2015 and RDIF2016). Haplotype block structure analysis predicted 22 candidate genes for VW resistance based on A10_99672586 with a minimum P-value (-log10 P = 6.21). One of these genes (CG02) was near the significant SNP A10_99672586 (0.26 Mb), located in a 372-kb haplotype block, and its Arabidopsis AT3G25510 homologues contain TIR-NBS-LRR domains that may be involved in disease resistance response. Real-time quantitative PCR and virus-induced gene silencing (VIGS) analysis showed that CG02 was specific to up-regulation in the resistant (R) genotype Zhongzhimian2 (ZZM2) and that silenced plants were more susceptible to V. dahliae. These results indicate that CG02 is likely the candidate gene for resistance against V. dahliae in cotton. The identified locus or gene may serve as a promising target for genetic engineering and selection for improving resistance to VW in cotton.


Assuntos
Gossypium/genética , Gossypium/microbiologia , Verticillium/patogenicidade , China , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genética Populacional , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único
6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(3): 795-800, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-25208415

RESUMO

Through carrying out spectral test experiment, the influence factors of spectrum test were analyzed, the influence degree of various factors in spectral recognition was explicated and the method of spectra test was optimized for cotton leaf infected by verticillium wilt. The results indicated that under different severity levels, the shape and value of reflectance of disease symptoms part were Significantly higher than healthy part on cotton leaf, compared with the black board as baseboard, the spectral values of disease leaves were slightly higher in visible light wavebands and significantly higher in others wavebands than healthy leaves on white baseboard. Different position of leaf on cotton plant has different effect degree to the recognition of disease, the effect of stem leaf was more obvious than that of else leaf, the identical leaf position was less influenced by disease than band. Test time and cotton varieties had less influence on recognizing disease by spectra, and the effect of the same condition was acceptable. Test site had no effect on disease recognition by spectra. The effect of each factor was different for recognizing disease leaf by spectra, and this study will provide reference for the researchers of crop disease diagnosis by spectra.


Assuntos
Gossypium/microbiologia , Doenças das Plantas , Folhas de Planta/microbiologia , Verticillium , Luz , Análise Espectral
7.
Ying Yong Sheng Tai Xue Bao ; 24(4): 1009-16, 2013 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-23898659

RESUMO

Under the climatic and ecological conditions of Xingjiang, Northwest China, different degrees of drought stress were installed during the growth stages of cotton, and the drip irrigation with mulch was adopted, aimed to study the effects of drought stress and re-watering on the endogenous hormones (abscisic acid, ABA; and zeatins, ZRs) contents of cotton roots and leaves and the stomatal conductance (gs) of cotton leaves. With the increase of drought stress at different growth stages, the ABA contents of cotton roots and leaves increased, while the ZRs contents of cotton roots and leaves and the gsand photosynthetic rate (Pn) of cotton leaves decreased, with greater decrements in the treatment of soil moisture content being 40% -45% of field capacity at early flowering-full flowering stage. After re-watering, the ABA contents of cotton roots and leaves d:d not have a decrease with the improvement of soil moisture regime, while the ZRs contents of cotton roots recovered rapidly or exceeded the control after 1-3 days of re-watering. There was a positive correlation between the ZRs contents of cotton roots and the gs of cotton leaves. In the treatment of soil moisture content being 50% -55% of field capacity at full budding-early flowering stage, the ZRs contents and gs of cotton leaves recovered more quickly and with greater increments. It was suggested that the higher ZRs contents of cotton roots after re-watering could be the main cause for the higher stomatal conductance and photosynthetic rate of cotton leaves.


Assuntos
Irrigação Agrícola/métodos , Secas , Gossypium/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , China , Gossypium/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA