Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Lancet Infect Dis ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614117

RESUMO

BACKGROUND: The Oka varicella vaccine strain remains neurovirulent and can establish lifelong latent infection, raising safety concerns about vaccine-related herpes zoster. In this study, we aimed to evaluate the immunogenicity and safety of a skin-attenuated and neuro-attenuated varicella vaccine candidate (v7D vaccine). METHODS: We did this randomised, double-blind, controlled, phase 2a clinical trial in Jiangsu, China. Healthy children aged 3-12 years with no history of varicella infection or vaccination were enrolled and randomly assigned (1:1:1:1) to receive a single subcutaneous injection of the v7D vaccine at 3·3 log10 plaque forming units (PFU; low-dose v7D group), 3·9 log10 PFU (medium-dose v7D group), and 4·2 log10 PFU (high-dose v7D group), or the positive control varicella vaccine (vOka vaccine group). All the participants, laboratory personnel, and investigators other than the vaccine preparation and management staff were masked to the vaccine allocation. The primary outcome was assessment of the geometric mean titres (GMTs) and seroconversion rates of anti-varicella zoster virus immunoglobulin G (IgG) induced by different dose groups of v7D vaccine at 0, 42, 60, and 90 days after vaccination in the per-protocol set for humoral immune response analysis. Safety was a secondary outcome, focusing on adverse events within 42 days post-vaccination, and serious adverse events within 6 months after vaccination. This study was registered on Chinese Clinical Trial Registry, ChiCTR2000034434. FINDINGS: On Aug 18-21, 2020, 842 eligible volunteers were enrolled and randomly assigned treatment. After three participants withdrew, 839 received a low dose (n=211), middle dose (n=210), or high dose (n=210) of v7D vaccine, or the vOka vaccine (n=208). In the per-protocol set for humoral immune response analysis, the anti-varicella zoster virus IgG antibody response was highest at day 90. At day 90, the seroconversion rates of the low-dose, medium-dose, and high-dose groups of v7D vaccine and the positive control vOka vaccine group were 100·0% (95% CI 95·8-100·0; 87 of 87 participants), 98·9% (93·8-100·0; 87 of 88 participants), 97·8% (92·4-99·7; 91 of 93 participants), and 96·4% (89·8-99·2; 80 of 83 participants), respectively; the GMTs corresponded to values of 30·8 (95% CI 26·2-36·0), 31·3 (26·7-36·6), 28·2 (23·9-33·2), and 38·5 (31·7-46·7). The v7D vaccine, at low dose and medium dose, elicited a humoral immune response similar to that of the vOka vaccine. However, the high-dose v7D vaccine induced a marginally lower GMT compared with the vOka vaccine at day 90 (p=0·027). In the per-protocol set, the three dose groups of the v7D vaccine induced a similar humoral immune response at each timepoint, with no statistically significant differences. The incidence of adverse reactions in the low-dose, medium-dose, and high-dose groups of v7D vaccine was significantly lower than that in the vOka vaccine group (17% [35 of 211 participants], 20% [41 of 210 participants], and 13% [27 of 210 participants] vs 24% [50 of 208 participants], respectively; p=0·025), especially local adverse reactions (10% [22 of 211 participants], 14% [30 of 210 participants] and 9% [18 of 210 participants] vs 18% [38 of 208 participants], respectively; p=0·016). None of the serious adverse events were vaccine related. INTERPRETATION: The three dose groups of the candidate v7D vaccine exhibit similar humoral immunogenicity to the vOka vaccine and are well tolerated. These findings encourage further investigations on two-dose vaccination schedules, efficacy, and the potential safety benefit of v7D vaccine in the future. FUNDING: The National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences, the Fundamental Research Funds for the Central Universities, and Beijing Wantai. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

2.
Lancet Respir Med ; 11(12): 1075-1088, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979588

RESUMO

BACKGROUND: The live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine (dNS1-RBD, Pneucolin; Beijing Wantai Biological Pharmacy Enterprise, Beijing, China) confers long-lasting and broad protection in animal models and is, to our knowledge, the first COVID-19 mucosal vaccine to enter into human trials, but its efficacy is still unknown. We aimed to assess the safety and efficacy (but not the immunogenicity) of dNS1-RBD against COVID-19. METHODS: We did a multicentre, randomised, double-blind, placebo-controlled, adaptive design, phase 3 trial at 33 centres (private or public hospitals, clinical research centres, or Centre for Disease Control and Prevention) in four countries (Colombia, Philippines, South Africa, and Viet Nam). Men and non-pregnant women (aged ≥18 years) were eligible if they had never been infected with SARS-CoV-2, and if they did not have a SARS-CoV-2 vaccination history at screening or if they had received at least one dose of other SARS-CoV-2 vaccines 6 months or longer before enrolment. Eligible adults were randomly assigned (1:1) to receive two intranasal doses of dNS1-RBD or placebo administered 14 days apart (0·2 mL per dose; 0·1 mL per nasal cavity), with block randomisation via an interactive web-response system, stratified by centre, age group (18-59 years or ≥60 years), and SARS-CoV-2 vaccination history. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary outcomes were safety of dNS1-RBD in the safety population (ie, those who had received at least one dose of dNS1-RBD or placebo) and efficacy against symptomatic SARS-CoV-2 infection confirmed by RT-PCR occurring 15 days or longer after the second dose in the per-protocol population (ie, those who received two doses, were followed up for 15 days or longer after the second dose, and had no major protocol deviations). The success criterion was predefined as vaccine efficacy of more than 30%. This trial is registered with the Chinese Clinical Trial Registry (ChiCTR2100051391) and is completed. FINDINGS: Between Dec 16, 2021, and May 31, 2022, 41 620 participants were screened for eligibility and 31 038 participants were enrolled and randomly assigned (15 517 in the vaccine group and 15 521 in the placebo group). 30 990 participants who received at least one dose (15 496 vaccine and 15 494 placebo) were included in the safety analysis. The results showed a favourable safety profile, with the most common local adverse reaction being rhinorrhoea (578 [3·7%] of 15 500 vaccine recipients and 546 [3·5%] of 15 490 placebo recipients) and the most common systemic reaction being headache (829 [5·3%] vaccine recipients and 797 [5·1%] placebo recipients). We found no differences in the incidences of adverse reactions between participants in the vaccine and placebo groups. No vaccination-related serious adverse events or deaths were observed. Among 30 290 participants who received two doses, 25 742 were included in the per-protocol efficacy analysis (12 840 vaccine and 12 902 placebo). The incidence of confirmed symptomatic SARS-CoV-2 infection caused by omicron variants regardless of immunisation history was 1·6% in the vaccine group and 2·3% in the placebo group, resulting in an overall vaccine efficacy of 28·2% (95% CI 3·4-46·6), with a median follow-up duration of 161 days. INTERPRETATION: Although this trial did not meet the predefined efficacy criteria for success, dNS1-RBD was well tolerated and protective against omicron variants, both as a primary immunisation and as a heterologous booster. FUNDING: Beijing Wantai Biological Pharmacy Enterprise, National Science and Technology Major Project, National Natural Science Foundation of China, Fujian Provincial Science and Technology Plan Project, Natural Science Foundation of Fujian Province, Xiamen Science and Technology Plan Special Project, Bill & Melinda Gates Foundation, the Ministry of Education of China, Xiamen University, and Fieldwork Funds of Xiamen University.


Assuntos
COVID-19 , Vacinas Virais , Adulto , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , COVID-19/prevenção & controle , Método Duplo-Cego
3.
PeerJ ; 11: e15698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554334

RESUMO

Background: Human parvovirus B19 (B19V) is a common contaminant found in plasma pools and plasma derivatives. Previous studies were mainly focused on limited aspects, further assessment of prevalence of B19V DNA and antibodies in plasma donors, the contamination of B19V in pooled plasma and plasma derivatives should be performed in China. Study Design and Methods: Individual plasma donors' samples from four provinces and pooled plasma from four Chinese blood product manufacturers were collected and screened using B19V DNA diagnostic kits between October 2018 and May 2020. The positive samples were investigated for the seroprevalence of B19V antibodies and subjected to sequence analysis and alignment for phylogenetic studies. Moreover, 11 plasma donors who were B19V DNA-positive at their first testing were also followed during the later donation period. Additionally, 400 plasma pools and 20 batches of plasma derivatives produced by pooled plasma with a viral load of B19V DNA exceeding 104IU/mL were also collected and tested for B19V DNA and antibodies. Objectives: To comprehensively and systematically determine the frequency and viral load of B19V DNA in plasma donors, pooled plasma, and plasma derivatives from four Chinese blood product manufacturers. Results: A total of 17,187 plasma donors were analyzed and 44 (0.26%) specimens were found positive for B19V DNA. The quantitative DNA levels ranged from 1.01 × 101 to 5.09 × 1012 IU/mL. Forty-four DNA-positive specimens were also investigated for the seroprevalence of B19V antibodies, 75.0% and 2.3% of which were seropositive for B19V IgG and IgM antibodies, respectively. The phylogenic analyses showed that the prevalent genotypes in the four provinces' plasma donors belonged to B19V Genotype 1. Eleven individual plasma donors who were B19V DNA-positive at the first donation were then followed for a period, and in general, the DNA levels of B19V gradually decreased. Moreover, 64.8% (259/400) of the pooled plasma was contaminated by B19V, with concentrations of 1.05 × 100-3.36 × 109IU/mL. Approximately 72.6% of the DNA-positive plasma pools were only moderately contaminated (<104 IU/mL), while 27.4% contained >104 IU/mL. Twenty batches of plasma derivatives produced by pooled plasma with a viral load of B19V DNA exceeding 104IU/mL were also tested. B19V was detected in 5/5 PCC samples and 5/5 factor VIII samples but was not found in the intravenous immune globulin and albumin samples. Conclusion: The contamination of B19V in pooled plasma and plasma-derived clotting factor concentrates is serious. Whether B19V nucleic acid testing (NAT) screening of plasma and plasma derivatives is launched in China, blood product manufacturers should spontaneously perform B19V NAT screening in plasma donors and mini-pool plasma. These measures can ensure that samples with high titer B19V DNA are discarded in order to prevent and control this transfusion transmitted virus.


Assuntos
Anticorpos Antivirais , Doadores de Sangue , DNA Viral , Parvovirus B19 Humano , Humanos , DNA Viral/sangue , População do Leste Asiático , Parvovirus B19 Humano/genética , Filogenia , Reação em Cadeia da Polimerase , Estudos Soroepidemiológicos , Anticorpos Antivirais/sangue
4.
Lancet Reg Health West Pac ; 34: 100707, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37283962

RESUMO

Background: Despite the success in decreasing varicella-related disease burden, live-attenuated Oka vaccine strain of varicella-zoster virus (vOka) remains neuro-virulence and may establish latency and reactivate, raising safety concerns. Here we aimed to evaluate the safety and immunogenicity of a skin- and neuro-attenuated varicella vaccine candidate (v7D). Methods: This is a randomized, double-blind, placebo-controlled, dose-escalation and age de-escalation phase 1 clinical trial conducted in Liuzhou, China (ChiCTR1900022284). Eligible healthy participants aged 1-49 years, with no history of varicella vaccination and had no history of varicella or herpes zoster were sequentially enrolled and allocated to subcutaneously receive one of the three doses (3.3, 3.9, and 4.2 lg PFU) of v7D, vOka or placebo in a dose-escalation and age de-escalation manner. The primary outcome was safety, assessed by adverse events/reactions within 42 days after vaccination and serious adverse events (SAEs) throughout six months after vaccination. The secondary outcome was immunogenicity, assessed by the VZV IgG antibodies measured with fluorescent antibody to membrane antigen (FAMA) assay. Findings: Between April 2019 and March 2020, totally 224 participants were enrolled. Within 42 days post-vaccination, the incidences of adverse reactions were 37.5%-38.7% in the three doses of v7D groups which were similar to that of the vOka (37.5%) and placebo (34.4%) groups. No SAE has been judged as causally related to vaccination. At 42 days post-vaccination, 100% of children aged 1-12 years in the per-protocol set of immunogenicity cohort of the v7D groups became seropositive. Meanwhile, in the intent-to-treat set of immunogenicity cohort of subjects aged 1-49 years, the geometric mean increases of the three groups of v7D vaccine were 3.8, 5.8 and 3.2, respectively, which were similar to that of the vOka vaccine group (4.4) and significantly higher than that of the placebo group (1.3). Interpretation: The candidate v7D vaccine has been preliminarily shown to be well-tolerated and immunogenic in humans. The data warrant further evaluation of the safety advantage and efficacy of v7D as a varicella vaccine. Funding: The National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences, and Beijing Wantai CO., LTD.

5.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35688558

RESUMO

BACKGROUND: Oncolytic viruses (OVs) are capable to inflame the tumor microenvironment (TME) and elicit infiltrating tumor-specific T cell responses. However, OV treatment negatively alters the cancer-immune set point in tumors to attenuate the antitumor immune response, which suggests the necessity of dissecting the immune landscape of the virus-treated tumors and developing novel strategies to maximize the potential of OVs. The aim of this study is to investigate the effect of the single-chain variable fragment (scFv)-armed OVs targeting PD-1 on the TME, and ultimately overcome localized immunosuppression to sensitize tumors to immunotherapies. METHODS: A tumor-selective oncolytic herpes simplex virus vector was engineered to encode a humanized scFv against human PD-1 (hPD-1scFv) (YST-OVH). The antitumor efficacy of YST-OVH was explored in multiple therapeutic mouse models. The neurotoxicity and safety of YST-OVH were evaluated in nonhuman primates. The precise dynamics in the TME involved in YST-OVH treatment were dissected using cytometry by time-of-flight (CyTOF). RESULTS: The identified hPD-1scFv showed superior T-cell activating activity. Localized delivery of hPD-1scFv by YST-OVH promotes systemic antitumor immunity in humanized PD-1 mouse models of established cancer. Immune profiling of tumors using CyTOF revealed the enhanced antitumor effect of YST-OVH, which largely relied on CD8+ T cell activity by augmenting the tumor infiltration of effector CD8+ T cells and establishment of memory CD8+ T cells and reducing associated CD8+ T cell exhaustion. Furthermore, YST-OVH treatment modified the cancer-immune set point of tumors coupled to coexpression of CTLA-4 and TIM-3 on exhausted CD8+ T cells and high levels of CTLA-4+ Treg cells. A combination approach incorporating anti-CTLA-4 or anti-TIM-3 further improved efficacy by increasing tumor immunogenicity and activating antitumor adaptive immune responses. Moreover, this therapeutic strategy showed no neurotoxicity and was well tolerated in nonhuman primates. The benefit of intratumoral hPD-1scFv expression was also observed in humanized mice bearing human cancer cells. CONCLUSION: Localized delivery of PD-1 inhibitors by engineered YST-OVH was a highly effective and safe strategy for cancer immunotherapy. YST-OVH also synergized with CTLA-4 or TIM-3 blockade to enhance the immune response to cancer. These data provide a strong rationale for further clinical evaluation of this novel therapeutic approach.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linfócitos T CD8-Positivos , Antígeno CTLA-4 , Linhagem Celular Tumoral , Modelos Animais de Doenças , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Imunidade , Camundongos , Receptor de Morte Celular Programada 1
6.
Lancet Respir Med ; 10(8): 749-760, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644168

RESUMO

BACKGROUND: All currently available SARS-CoV-2 vaccines are administered by intramuscular injection. We aimed to evaluate the safety and immunogenicity of a live-attenuated influenza virus vector-based SARS-CoV-2 vaccine (dNS1-RBD) administered by intranasal spray in healthy adults. METHODS: We did double-blind, randomised, placebo-controlled phase 1 and 2 trials, followed by a phase 2 extension trial, at a single centre in Jiangsu, China. Healthy adults (≥18 years) who had negative serum or fingertip blood total antibody tests for SARS-CoV-2 (in phases 1 and 2), with no prevalent SARS-CoV-2 infection or history of infection and no SARS-CoV-2 vaccination history (in all three trials reported here), were enrolled. Participants were randomly allocated (4:1 in phase 1, 2:1 in phase 2, and 1:1 in the extension trial) to receive two intranasal doses of the dNS1-RBD vaccine or placebo on days 0 and 14 or, for half of the participants in phase 2, on days 0 and 21. To avoid cross-contamination during administration, vaccine and placebo recipients were vaccinated in separate rooms in the extension trial. The phase 1 primary outcome was safety (adverse events recorded on days 0-44; serious adverse events recorded from day 0 until 12 months after the second dose). In the phase 2 and extension trials, the primary immunogenicity outcomes were SARS-CoV-2-specific T-cell response in peripheral blood (measured by IFN-γ ELISpot), proportion of participants with positive conversion for SARS-CoV-2 receptor-binding domain (RBD)-specific IgG and secretory IgA (s-IgA) antibodies, and concentration of SARS-CoV-2 RBD IgG in serum and SARS-CoV-2 RBD s-IgA in the nasopharynx (measured by ELISA) at 1 month after the second dose in the per-protocol set for immunogenicity. χ2 test and Fisher's exact test were used to analyse categorical data, and t test and Wilcoxon rank sum test to compare the measurement data between groups. These trials were registered with the Chinese Clinical Trial Registry (ChiCTR2000037782, ChiCTR2000039715, and ChiCTR2100048316). FINDINGS: Between Sept 1, 2020, and July 4, 2021, 63, 724, and 297 participants without a history of SARS-CoV-2 vaccination were enrolled in the phase 1, phase 2, and extension trials, respectively. At least one adverse reaction after vaccination was reported in 133 (19%) of 684 participants in the vaccine groups. Most adverse reactions were mild. No vaccine-related serious adverse event was noted. Specific T-cell immune responses were observed in 211 (46% [95% CI 42-51]) of 455 vaccine recipients in the phase 2 trial, and in 48 (40% [31-49]) of 120 vaccine recipients compared with one (1% [0-5]) of 111 placebo recipients (p<0·0001) in the extension trial. Seroconversion for RBD-specific IgG was observed in 48 (10% [95% CI 8-13]) of 466 vaccine recipients in the phase 2 trial (geometric mean titre [GMT] 3·8 [95% CI 3·4-4·3] in responders), and in 31 (22% [15-29]) of 143 vaccine recipients (GMT 4·4 [3·3-5·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. 57 (12% [95% CI 9-16]) of 466 vaccine recipients had positive conversion for RBD-specific s-IgA (GMT 3·8 [95% CI 3·5-4·1] in responders) in the phase 2 trial, as did 18 (13% [8-19]) of 143 vaccine recipients (GMT 5·2 [4·0-6·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. INTERPRETATION: dNS1-RBD was well tolerated in adults. Weak T-cell immunity in peripheral blood, as well as weak humoral and mucosal immune responses against SARS-CoV-2, were detected in vaccine recipients. Further studies are warranted to verify the safety and efficacy of intranasal vaccines as a potential supplement to current intramuscular SARS-CoV-2 vaccine pools. Steps should be taken in future studies to reduce the potential for cross-contamination caused by the vaccine strain aerosol during administration. FUNDING: National Key Research and Development Program of China, National Science, Fujian Provincial Science, CAMS Innovation Fund for Medical Sciences, and Beijing Wantai Biological Pharmacy Enterprise.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Orthomyxoviridae , Vacinas Virais , Adulto , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Humanos , Imunoglobulina A , Imunoglobulina G , SARS-CoV-2 , Vacinas Atenuadas/efeitos adversos
7.
Sci Bull (Beijing) ; 67(13): 1372-1387, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35637645

RESUMO

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.

8.
Nat Commun ; 13(1): 824, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149692

RESUMO

Varicella caused by the primary infection of varicella-zoster virus (VZV) exerts a considerable disease burden globally. Current varicella vaccines consisting of the live-attenuated vOka strain of VZV are generally safe and effective. However, vOka retains full neurovirulence and can establish latency and reactivate to cause herpes zoster in vaccine recipients, raising safety concerns. Here, we rationally design a live-attenuated varicella vaccine candidate, v7D. This virus replicates like wild-type virus in MRC-5 fibroblasts and human PBMCs, the carrier for VZV dissemination, but is severely impaired for infection of human skin and neuronal cells. Meanwhile, v7D shows immunogenicity comparable to vOka both in vitro and in multiple small animal species. Finally, v7D is proven well-tolerated and immunogenic in nonhuman primates. Our preclinical data suggest that v7D is a promising candidate as a safer live varicella vaccine with reduced risk of vaccine-related complications, and could inform the design of other herpes virus vaccines.


Assuntos
Vacina contra Varicela/imunologia , Varicela/imunologia , Pele/imunologia , Vacinas Atenuadas/imunologia , Animais , Linhagem Celular , Varicela/prevenção & controle , Feminino , Fibroblastos , Cobaias , Herpes Zoster/virologia , Herpesvirus Humano 3 , Humanos , Imunogenicidade da Vacina , Pulmão , Masculino , Camundongos , Neurônios/patologia , Coelhos , Ratos , Pele/patologia , Vacinação , Vacinas Virais
9.
Cell Host Microbe ; 29(3): 448-462.e5, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539764

RESUMO

Enterovirus uncoating receptors bind at the surface depression ("canyon") that encircles each capsid vertex causing the release of a host-derived lipid called "pocket factor" that is buried in a hydrophobic pocket formed by the major viral capsid protein, VP1. Coxsackievirus and adenovirus receptor (CAR) is a universal uncoating receptor of group B coxsackieviruses (CVB). Here, we present five high-resolution cryoEM structures of CVB representing different stages of virus infection. Structural comparisons show that the CAR penetrates deeper into the canyon than other uncoating receptors, leading to a cascade of events: collapse of the VP1 hydrophobic pocket, high-efficiency release of the pocket factor and viral uncoating and genome release under neutral pH, as compared with low pH. Furthermore, we identified a potent therapeutic antibody that can neutralize viral infection by interfering with virion-CAR interactions, destabilizing the capsid and inducing virion disruption. Together, these results define the structural basis of CVB cell entry and antibody neutralization.


Assuntos
Microscopia Crioeletrônica , Enterovirus/metabolismo , Enterovirus/ultraestrutura , Animais , Anticorpos Neutralizantes , Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Enterovirus Humano B/metabolismo , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Receptores Virais , Vírion/metabolismo , Vírion/ultraestrutura , Desenvelopamento do Vírus
10.
Nat Microbiol ; 5(12): 1542-1552, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32895526

RESUMO

Varicella-zoster virus (VZV) is a medically important human herpesvirus that causes chickenpox and shingles, but its cell-associated nature has hindered structure studies. Here we report the cryo-electron microscopy structures of purified VZV A-capsid and C-capsid, as well as of the DNA-containing capsid inside the virion. Atomic models derived from these structures show that, despite enclosing a genome that is substantially smaller than those of other human herpesviruses, VZV has a similarly sized capsid, consisting of 955 major capsid protein (MCP), 900 small capsid protein (SCP), 640 triplex dimer (Tri2) and 320 triplex monomer (Tri1) subunits. The VZV capsid has high thermal stability, although with relatively fewer intra- and inter-capsid protein interactions and less stably associated tegument proteins compared with other human herpesviruses. Analysis with antibodies targeting the N and C termini of the VZV SCP indicates that the hexon-capping SCP-the largest among human herpesviruses-uses its N-terminal half to bridge hexon MCP subunits and possesses a C-terminal flexible half emanating from the inner rim of the upper hexon channel into the tegument layer. Correlation of these structural features and functional observations provide insights into VZV assembly and pathogenesis and should help efforts to engineer gene delivery and anticancer vectors based on the currently available VZV vaccine.


Assuntos
Capsídeo/ultraestrutura , Herpesvirus Humano 3/ultraestrutura , Infecção pelo Vírus da Varicela-Zoster/virologia , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Herpesvirus Humano 3/química , Herpesvirus Humano 3/metabolismo , Humanos , Modelos Moleculares , Domínios Proteicos , Vírion/metabolismo , Vírion/ultraestrutura
11.
Cell Host Microbe ; 27(2): 249-261.e5, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32027857

RESUMO

Hand, foot, and mouth disease is a common childhood illness primarily caused by coxsackievirus A16 (CVA16), for which there are no current vaccines or treatments. We identify three CVA16-specific neutralizing monoclonal antibodies (nAbs) with therapeutic potential: 18A7, 14B10, and NA9D7. We present atomic structures of these nAbs bound to all three viral particle forms-the mature virion, A-particle, and empty particle-and show that each Fab can simultaneously occupy the mature virion. Additionally, 14B10 or NA9D7 provide 100% protection against lethal CVA16 infection in a neonatal mouse model. 18A7 binds to a non-conserved epitope present in all three particles, whereas 14B10 and NA9D7 recognize broad protective epitopes but only bind the mature virion. NA9D7 targets an immunodominant site, which may overlap the receptor-binding site. These findings indicate that CVA16 vaccines should be based on mature virions and that these antibodies could be used to discriminate optimal virion-based immunogens.


Assuntos
Anticorpos Neutralizantes , Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/ultraestrutura , Proteínas do Capsídeo/imunologia , Linhagem Celular , Microscopia Crioeletrônica , Enterovirus/imunologia , Enterovirus/ultraestrutura , Enterovirus Humano A/ultraestrutura , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Camundongos , Vacinas Virais/imunologia , Vírion/imunologia
12.
Appl Microbiol Biotechnol ; 100(6): 2809-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26767830

RESUMO

Coxsackievirus A16 (CA16) is one of the major causative agents of hand, foot, and mouth disease (HFMD). No CA16 vaccine candidates have progressed to clinical trials so far. Immunogenicity studies indicated that different CA16 particles have much influence on the efficacy of a candidate vaccine. However, there are still no relevant reports on the methods of detecting different CA16 particles. In this study, we screened several monoclonal antibodies (mAbs) specific for different CA16 particles, and several sandwich enzyme-linked immunoassays (ELISAs) were developed to measure the different types of CA16 viral particles. The mAbs that could only bind denatured or empty capsids could not neutralize CA16. In contrast, the mAbs that could bind mature full particles or all types of particles showed obvious neutralizing activity. The thermal stability of different CA16 particles was evaluated using these sandwich ELISAs. The mature full particles were found to be more thermolabile than the other types of particles and could be stabilized by high concentrations of cations. These methods can be used to assist in the potency control of CA16 vaccines and will promote the development of a CA16 vaccine.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Enterovirus/classificação , Ensaio de Imunoadsorção Enzimática/métodos , Vírion/classificação , Virologia/métodos , Anticorpos Neutralizantes/imunologia , Enterovirus/imunologia , Vírion/imunologia
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 29(3): 287-91, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23643087

RESUMO

OBJECTIVE: To develop a comprehensive detection platform for immunoprotection of inactivated coxsackievirus A16(CA16) vaccine based on the neutralizing antibodies tested through competitive inhibition ELISA, micro-cytopathic effect neutralization test and neonatal mice challenge protection test. METHODS: The female BALB/c mice, SD rats and Hartley guinea pigs were inoculated intraperitoneally at 0, 4, 6, 8 weeks with the three vaccine candidates which were made from 3726, 4430 and 4432 virus absorbed on aluminium adjuvant. Immune sera were taken at 0, 4, 6, 8, 10 weeks and serum neutralizing antibodies were evaluated by competitive inhibition-ELISA, micro-cytopathic effect neutralization test and neonatal mice challenge protection test, respectively. The relationships of the three methods were analyzed by SPSS16.0 statistical software. RESULTS: The level of neutralizing antibodies reached the peak after the second booster. The correlation coefficient was 0.861 between competitive inhibition-ELISA and micro-cytopathic effect neutralization test, 0.8 between competitive inhibition-ELISA and neonatal mice challenge protection test and 0.89 between micro-cytopathic effect neutralization test and neonatal mice challenge protection test. CONCLUSION: A comprehensive detection system through competitive inhibition ELISA, micro-cytopathic effect neutralization test and neonatal mice challenge protection test measuring the neutralizing antibodies in immune sera has been constructed. The competitive inhibition-ELISA is superior to "golden standards" in speed, sensitivity, throughput and price, which may have great application prospect.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Enterovirus/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Vacinas Virais/imunologia , Animais , Efeito Citopatogênico Viral/imunologia , Feminino , Cobaias , Imunização , Camundongos , Ratos , Fatores de Tempo
14.
J Virol ; 86(16): 8614-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22674980

RESUMO

Varicella-zoster virus (VZV) is the causative agent of chickenpox and herpes zoster (shingles). After the primary infection, the virus remains latent in sensory ganglia and reactivates upon weakening of the cellular immune system due to various conditions, erupting from sensory neurons and infecting the corresponding skin tissue. The current varicella vaccine is highly attenuated in the skin and yet retains its neurovirulence and may reactivate and damage sensory neurons. The factors involved in neuronal invasion and establishment of latency are still elusive. Previously, we constructed a library of whole-gene deletion mutants carrying a bacterial artificial chromosome sequence and a luciferase marker in order to perform a comprehensive VZV genome functional analysis. Here, screening of dispensable gene deletion mutants in differentiated neuronal cells led to the identification of ORF7 as the first known, likely a main, VZV neurotropic factor. ORF7 is a virion component localized to the Golgi compartment in infected cells, whose deletion causes loss of polykaryon formation in epithelial cell culture. Interestingly, ORF7 deletion completely abolishes viral spread in human nervous tissue ex vivo and in an in vivo mouse model. This finding adds to our previous report that ORF7 is also a skin-tropic factor. The results of our investigation will not only lead to a better understanding of VZV neurotropism but could also contribute to the development of a neuroattenuated vaccine candidate against shingles or a vector for delivery of other antigens.


Assuntos
Herpesvirus Humano 3/patogenicidade , Neurônios/virologia , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Deleção de Genes , Herpes Zoster/patologia , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Humanos , Camundongos , Técnicas de Cultura de Órgãos , Proteínas Virais/genética , Virulência , Fatores de Virulência/genética
15.
J Immunol ; 174(1): 195-204, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15611241

RESUMO

Previously, we reported that a 7-mer HLA-A11-restricted peptide (YVNTNMG) of hepatitis B virus (HBV) core Ag (HBcAg(88-94)) was associated with heat shock protein (HSP) gp96 in liver tissues of patients with HBV-induced hepatocellular carcinoma (HCC). This peptide is highly homologous to a human HLA-A11-restricted 9-mer peptide (YVNVNMGLK) and to a mouse H-2-K(d)-restricted 9-mer peptide (SYVNTNMGL). To further characterize its immunogenicity, BALB/c mice were vaccinated with the HBV 7-mer peptide. It was found that a specific CTL response was induced by the 7-mer peptide, although the response was approximately 50% of that induced by the mouse H-2-K(d)-restricted 9-mer peptide, as detected by ELISPOT, tetramer, and (51)Cr release assays. To evaluate the adjuvant effect of HSP gp96, mice were coimmunized with gp96 and the 9-mer peptide, and a significant adjuvant effect was observed with gp96. To further determine whether the immune effect of gp96 was dependent on peptide binding, the N- and C-terminal fragments of gp96, which are believed to contain the putative peptide-binding domain, were cloned and expressed in Escherichia coli. CTL assays indicated that only the N-terminal fragment, but not the C-terminal fragment, was able to produce the adjuvant effect. These results clearly demonstrated the potential of using gp96 or its N-terminal fragment as a possible adjuvant to augment CTL response against HBV infection and HCC.


Assuntos
Antígenos de Neoplasias/imunologia , Vírus da Hepatite B/imunologia , Peptídeos/imunologia , Peptídeos/isolamento & purificação , Linfócitos T Citotóxicos/imunologia , Adjuvantes Imunológicos , Animais , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Camundongos , Peptídeos/genética , Proteínas Recombinantes/imunologia
16.
Sheng Wu Gong Cheng Xue Bao ; 20(4): 619-22, 2004 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-15969000

RESUMO

Heat shock protein gp96 is a glycoprotein which was found several years ago. Besides its function as a molecular chaperone, it is also reported to play important roles both in innate immunity and adaptive immunity. Gp96 can stimulate the maturation of antigen presenting cells (especially dendritic cells) and the secretion of cytokines. Gp96 and its associated peptides could stimulate peptide specific cytotoxic T lymphocyte reaction (CTL), which was very promising in the designing of anti-virus and anti-tumor vaccines. However the expression level of whole length gp96 was relatively low in E. coli and the purity of gp96 are not very suitable for further study. We successfully cloned the carboxy terminal fragment (560aa-751aa) of murine gp96 into the pGEX-6p-1 vector and expressed in BL21 strain. This fragment contains the peptide binding domain and the dimerization domain. After purification, the recombinant fusion protein was cleaved with the PreScission Protease and analyzed by Gelfiltration. The results show that this fragment may be related to the dimerization of gp96 and make an foundation for further investigations of the protein.


Assuntos
Antígenos de Neoplasias/genética , Fragmentos de Peptídeos/genética , Proteínas Recombinantes de Fusão/biossíntese , Animais , Western Blotting , Cromatografia em Gel , Clonagem Molecular , Camundongos , Proteínas Recombinantes de Fusão/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA