Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 351: 122807, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852800

RESUMO

AIMS: Differentiation-inducing factor-1 (DIF-1) is a polyketide produced by Dictyostelium discoideum that inhibits growth and migration, while promoting the differentiation of Dictyostelium stalk cells through unknown mechanisms. DIF-1 localizes in stalk mitochondria. In addition to its effect on Dictyostelium, DIF-1 also inhibits growth and migration, and induces mitochondrial fission followed by mitophagy in mammalian cells, at least in part by activating AMP-activated protein kinase (AMPK). In a previous study, we found that DIF-1 binds to mitochondrial malate dehydrogenase (MDH2) and inhibits its activity in HeLa cells. In the present study, we investigated whether MDH2 serves as a pharmacological target of DIF-1 in mammalian cells. MAIN METHODS: To examine the enzymatic activity of MDH, mitochondrial morphology, and molecular mechanisms of DIF-1 action, we conducted an MDH reverse reaction assay, immunofluorescence staining, western blotting, and RNA interference using mammalian cells such as human umbilical vein endothelial cells, human cervical cancer cells, mouse endothelial cells, and mouse breast cancer cells. KEY FINDINGS: DIF-1 inhibited mitochondrial but not cytoplasmic MDH activity. Similar to DIF-1, LW6, an authentic MDH2 inhibitor, induced phosphorylation of AMPK, resulting in the phosphorylation of acetyl-CoA carboxylase (ACC) and the dephosphorylation of p70 S6 kinase with approximately the same potency. DIF-1 and LW6 induced mitochondrial fission. Furthermore, MDH2 knockdown using siRNA reproduced the DIF-1 action on the AMPK signaling and mitochondrial morphology. Conversely, an AMPK inhibitor prevented DIF-1-induced mitochondrial fission. SIGNIFICANCE: We propose that MDH2 is a mammalian target of DIF-1 for the activation of AMPK and induction of mitochondrial fission.


Assuntos
Proteínas Quinases Ativadas por AMP , Malato Desidrogenase , Mitocôndrias , Dinâmica Mitocondrial , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/fisiologia , Malato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Células HeLa , Animais , Hexanonas/farmacologia , Hexanonas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ativação Enzimática , Hidrocarbonetos Clorados
2.
J Pharmacol Sci ; 152(1): 39-49, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059490

RESUMO

Differentiation-inducing factor 1 (DIF-1) is a morphogen produced by Dictyostelium discoideum that inhibits the proliferation and migration of both D. discoideum and most mammalian cells. Herein, we assessed the effect of DIF-1 on mitochondria, because DIF-3, which is similar to DIF-1, reportedly localizes in the mitochondria when added exogenously, however the significance of this localization remains unclear. Cofilin is an actin depolymerization factor that is activated by dephosphorylation at Ser-3. By regulating the actin cytoskeleton, cofilin induces mitochondrial fission, the first step in mitophagy. Here, we report that DIF-1 activates cofilin and induces mitochondrial fission and mitophagy mainly using human umbilical vein endothelial cells (HUVECs). AMP-activated kinase (AMPK), a downstream molecule of DIF-1 signaling, is required for cofilin activation. Pyridoxal phosphatase (PDXP)-known to directly dephosphorylate cofilin-is also required for the effect of DIF-1 on cofilin, indicating that DIF-1 activates cofilin through AMPK and PDXP. Cofilin knockdown inhibits mitochondrial fission and decreases mitofusin 2 (Mfn2) protein levels, a hallmark of mitophagy. Taken together, these results indicate that cofilin is required for DIF-1- induced mitochondrial fission and mitophagy.


Assuntos
Dictyostelium , Hexanonas , Animais , Humanos , Proteínas Quinases Ativadas por AMP , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/farmacologia , Dinâmica Mitocondrial , Dictyostelium/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular , Monoéster Fosfórico Hidrolases , Piridoxal/farmacologia , Hexanonas/farmacologia , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA