Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
BMC Plant Biol ; 24(1): 367, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711041

RESUMO

BACKGROUND: The formation of shoots plays a pivotal role in plant organogenesis and productivity. Despite its significance, the underlying molecular mechanism of de novo regeneration has not been extensively elucidated in Capsicum annuum 'Dempsey', a bell pepper cultivar. To address this, we performed a comparative transcriptome analysis focusing on the differential expression in C. annuum 'Dempsey' shoot, callus, and leaf tissue. We further investigated phytohormone-related biological processes and their interacting genes in the C. annuum 'Dempsey' transcriptome based on comparative transcriptomic analysis across five species. RESULTS: We provided a comprehensive view of the gene networks regulating shoot formation on the callus, revealing a strong involvement of hypoxia responses and oxidative stress. Our comparative transcriptome analysis revealed a significant conservation in the increase of gene expression patterns related to auxin and defense mechanisms in both callus and shoot tissues. Consequently, hypoxia response and defense mechanism emerged as critical regulators in callus and shoot formation in C. annuum 'Dempsey'. Current transcriptome data also indicated a substantial decline in gene expression linked to photosynthesis within regenerative tissues, implying a deactivation of the regulatory system governing photosynthesis in C. annuum 'Dempsey'. CONCLUSION: Coupled with defense mechanisms, we thus considered spatial redistribution of auxin to play a critical role in the shoot morphogenesis via primordia outgrowth. Our findings shed light on shoot formation mechanisms in C. annuum 'Dempsey' explants, important information for regeneration programs, and have broader implications for precise molecular breeding in recalcitrant crops.


Assuntos
Capsicum , Perfilação da Expressão Gênica , Brotos de Planta , Transcriptoma , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
2.
Plant Dis ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557243

RESUMO

Phytopathogenic Fusarium species causing root and stem rot diseases in susceptible soybean (Glycine max (L.) Merrill) are a major threat to soybean production worldwide. Several Fusarium species have been reported to infect soybean plants in the Republic of Korea, including F. solani, F. oxysporum, F. fujikuroi, and F. graminearum (Cho et al., 2004; Choi et al., 2019; Kang et al., 2020). During the nationwide survey of soybean diseases in 2015, soybean plants showing symptoms of leaf chlorosis, wilting, and shoot death were found in soybean fields in Seosan, Chungnam. Fusarium isolates were obtained from the margins of sterilized necrotic symptomatic and asymptomatic regions of the stem tissues of diseased samples by culturing on potato dextrose agar (PDA). To examine the morphological characteristics, isolates were cultured on PDA at 25°C in the darkness for 10 days. Colonies produced white aerial mycelia with apricot pigments in the medium. Macroconidia were hyaline, slightly curved in shape with 3 or 4 septa, and their average length and width were 34.6± 0.56 µm (31.4 to 37.8 µm) and 4.7±0.16 µm (4.1 to 5.8 µm), respectively (n = 20). Microconidia were elongated, oval with 0 or 1 septum, and their average length and width were 11.4±0.87 and 5.2±0.32 µm, respectively (n = 20). The colonies and conidia exhibited morphological similarities to those of F. falciforme (Xu et al., 2022). Using the primers described by O'Donnell et al. (2008), identity of a representative strain '15-110' was further confirmed by sequencing portions of two genes, the translation elongation factor 1-alpha (EF-1α) and the second largest subunit of RNA polymerase II (RPB2). The two sequences (GenBank accession No. OQ992718 and OR060664) of 15-110 were 99% similar to those of two F. falciforme strains, 21BeanYC6-14 (GenBank accession nos. ON375419 and ON331931), and 21BeanYC6-16 (GenBank accession nos. ON697187 and ON331933). To test the pathogenicity, a single-spore isolate was cultured on carnation leaf agar (CLA) at 25℃ for 10 days. Pathogenicity test was performed by root-cutting assays using 14-day-old soybean seedlings of 'Daewon' and 'Taekwang'. Ten-day-old mycelia of 15-110 were collected from the CLA plates by scraping with distilled water, and the spore suspension was filtered and diluted to 1 × 106 conidia/mL. The roots of the soybean seedlings were partially cut and inoculated by soaking in the diluted spore suspension for two hours. The seedlings were then transplanted into 12 cm plastic pots (11 cm in height) and grown in a growth chamber at 25°C, 14h light/10h dark for 2 weeks. The infected plants exhibited wilting, observed brown discoloration on the root, and eventually died within 2 weeks, whereas the control plants inoculated with sterile water remained healthy. F. falciforme 15-110 was reisolated from infected plants, but not from the uninoculated controls. The morphology of the re-isolated fungus on PDA and its target gene sequences were identical to those of the original colony. To the best of our knowledge, this is the first report of root rot in soybean caused by F. falciforme in the Republic of Korea. Fusarium spp. induce a range of diseases in soybean plants, including root rot, damping-off, and wilt. Given the variable aggressiveness and susceptibility to fungicides among different Fusarium species, it is imperative to identify the Fusarium species posing a threat to soybean production. This understanding is crucial for developing a targeted and tailored disease management strategy to control Fusarium diseases.

3.
Curr Issues Mol Biol ; 46(4): 3081-3091, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38666923

RESUMO

Oxidative stress, a driver of liver pathology, remains a challenge in clinical management, necessitating innovative approaches. In this research, we delved into the therapeutic potential of polyphenols for oxidative liver injury using a multiscale network analysis framework. From the Phenol-Explorer database, we curated a list of polyphenols along with their corresponding PubChem IDs. Verified target information was then collated from multiple databases. We subsequently measured the propagative effects of these compounds and prioritized a ranking based on their correlation scores for oxidative liver injury. This result underwent evaluation to discern its effectiveness in differentiating between known and unknown polyphenols, demonstrating superior performance over chance level in distinguishing these compounds. We found that lariciresinol and isopimpinellin yielded high correlation scores in relation to oxidative liver injury without reported evidence. By analyzing the impact on a multiscale network, we found that lariciresinol and isopimpinellin were predicted to offer beneficial effects on the disease by directly acting on targets such as CASP3, NR1I2, and CYP3A4 or by modulating biological functions related to the apoptotic process and oxidative stress. This study not only corroborates the efficacy of identified polyphenols in liver health but also opens avenues for future investigations into their mechanistic actions.

4.
Plant Dis ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537140

RESUMO

Fusarium species are widespread soilborne pathogens that can cause damping-off, root rot, and wilting in soybean [Glycine max (L.) Merrill], subsequently leading to significant yield suppression. Several Fusarium spp. have already been documented for their pathogenicity on soybean plants in the Republic of Korea. The nationwide monitoring of soybean diseases continues to identify new pathogenic Fusarium spp. In 2016, five plant samples at R3-R4 growth stages, showing symptoms of wilting in the upper parts and root rot, were collected in Suwon, Gyeonggi, Republic of Korea. Fungal colonies were obtained from the diseased root samples, with the surface sterilized in 1% sodium hypochlorite for 2 min, rinsed thrice with sterile distilled water, and placed on water agar at 25°C. Five isolates were collected and purified by single-spore isolation. The fungal mycelium was subsequently cultivated on potato dextrose agar for ten days. The isolates produced abundant, aerial, and white mycelium and became purple in old cultures. Macroconidia were slender, falcate to almost straight, usually 3 to 5 septated, and thin-walled. Microconidia were formed in chains from polyphalides, clavate or oval, usually single-celled with a flattened base. These characteristics of isolates were consistent with the description of F. proliferatum (Leslie and Summerrell 2006), and the representative isolate 16-19 was selected for molecular identification to confirm its identity as F. proliferatum. Two evolutionarily conserved genes, the translation elongation factor 1-alpha (EF-1α) and the second-largest subunit of RNA polymerase II (RPB2) genes, were partially amplified using the primers described by O'Donnell et al. (2008), resulting in nucleotide sequences of 680 and 382 base pairs, respectively. These two sequences (GenBank accession numbers: OQ992720 and OR060666) showed 100 and 99.5% identity to the EF-1α and RPB2 of F. proliferatum A40 (GenBank accession numbers: KP964907 and KP964842). For the Petri-dish pathogenicity assay (Broders et al. 2007), five surface-sterilized seeds were placed on water agar media with either sterile water or actively growing '16-19' culture. After 7 days of incubation in a growth chamber (25°C; 12-hour photoperiod), brown lesions were observed on the roots of the inoculated plants, while no symptoms were observed in the sterile water-treated controls. The experiment was conducted three times. For root-cut pathogenicity assay, conidial suspension (1×106 conidia/ml) of the isolate '16-19' was prepared with harvested mycelia cultured on PDA for 10 days with sterile water. The roots of 10-day-old soybean seedlings were partially cut and soaked in either the suspension or sterile water for 2 hours. The seedlings were transplanted into 12 cm plastic pots (11 cm in height) and grew in a greenhouse (26 ± 3°C, 13-h photoperiod). The experiment followed a completely randomized design with three replicates (i.e. three plants in a pot), and it was repeated twice. The inoculated plants began to wilt 7 days after inoculation, while the sterile water-treated controls remained healthy. Ten days after inoculation, all plants were collected, washed under running tap water, and evaluated for the presence and severity of root rot using a 0-4 scale (Chang et al. 2015). The inoculated plants exhibited reduced vigor and developed dark brown lesions on their roots. F. proliferatum was reisolated from symptomatic root tissues of the infected plants, while not from those of the controls. Its colony and spores were morphologically identical to those of the original isolate. F. proliferatum was previously reported as a causative agent of soybean root rot in the United States (Díaz Arias et al. 2011) and Canada (Chang et al. 2015). This is the first report of soybean root rot caused by F. proliferatum in the Republic of Korea. This finding implies that F. proliferatum may potentially threaten soybean production in the Republic of Korea and suggests that effective disease management strategies should be established for soybean protection against the disease, along with continuous surveillance.

5.
Colloids Surf B Biointerfaces ; 230: 113488, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574616

RESUMO

Understanding biomolecular coronas that spontaneously occur around nanocarriers (NCs) in biological fluids is critical to nanomedicine as the coronas influence the behaviors of NCs in biological systems. In contrast to extensive investigations of protein coronas over the past decades, understanding of the coronas of biomolecules beyond proteins, e.g., metabolites, has been rather limited despite such biochemicals being ubiquitously involved in the coronas, which may influence the bio-nano interactions and thus exert certain biological impacts. In this study, serum biomolecular coronas, in particular the coronas of metabolites including lipids, around PEGylated doxorubicin-loaded liposomes with different surface property were investigated. The surface properties of liposomal drugs varied in terms of surface charge and PEGylation density by employing different ionic lipids such as DOTAP and DOPS and different concentrations of PEGylation lipids in liposome formulation. Using the liposomal drugs, the influence of the surface property on the serum metabolite profiles in the coronas was traced for target molecules of 220 lipids and 88 hydrophilic metabolites. From the results, it was found that metabolites rather than proteins mainly constitute the serum coronas on the liposomal drugs. Most of the serum metabolites were found to be retained in the coronas but with altered abundances. Depending on their class, lipids exhibited a different dependence on the surface property. However, overall, lipids appeared to favor corona formation on more negatively charged and PEGylated surfaces. Hydrophilic metabolites also exhibited a similar propensity for corona formation. This study on the surface dependence of metabolite corona formation provides a fundamental contribution toward attaining a comprehensive understanding of biomolecular coronas, which will be critical to the development of efficient nanomedicine.


Assuntos
Lipossomos , Coroa de Proteína , Lipossomos/química , Doxorrubicina/química , Coroa de Proteína/química , Polietilenoglicóis/química
6.
Front Plant Sci ; 14: 1202521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476170

RESUMO

Single-cell C4 photosynthesis (SCC4) in terrestrial plants without Kranz anatomy involves three steps: initial CO2 fixation in the cytosol, CO2 release in mitochondria, and a second CO2 fixation in central chloroplasts. Here, we investigated how the large number of mechanisms underlying these processes, which occur in three different compartments, are orchestrated in a coordinated manner to establish the C4 pathway in Bienertia sinuspersici, a SCC4 plant. Leaves were subjected to transcriptome analysis at three different developmental stages. Functional enrichment analysis revealed that SCC4 cycle genes are coexpressed with genes regulating cyclic electron flow and amino/organic acid metabolism, two key processes required for the production of energy molecules in C3 plants. Comparative gene expression profiling of B. sinuspersici and three other species (Suaeda aralocaspica, Amaranthus hypochondriacus, and Arabidopsis thaliana) showed that the direction of metabolic flux was determined via an alteration in energy supply in peripheral chloroplasts and mitochondria via regulation of gene expression in the direction of the C4 cycle. Based on these results, we propose that the redox homeostasis of energy molecules via energy metabolism regulation is key to the establishment of the SCC4 pathway in B. sinuspersici.

7.
Nat Commun ; 14(1): 3975, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463893

RESUMO

Metal negative electrodes that alloy with lithium have high theoretical charge storage capacity and are ideal candidates for developing high-energy rechargeable batteries. However, such electrode materials show limited reversibility in Li-ion batteries with standard non-aqueous liquid electrolyte solutions. To circumvent this issue, here we report the use of non-pre-lithiated aluminum-foil-based negative electrodes with engineered microstructures in an all-solid-state Li-ion cell configuration. When a 30-µm-thick Al94.5In5.5 negative electrode is combined with a Li6PS5Cl solid-state electrolyte and a LiNi0.6Mn0.2Co0.2O2-based positive electrode, lab-scale cells deliver hundreds of stable cycles with practically relevant areal capacities at high current densities (6.5 mA cm-2). We also demonstrate that the multiphase Al-In microstructure enables improved rate behavior and enhanced reversibility due to the distributed LiIn network within the aluminum matrix. These results demonstrate the possibility of improved all-solid-state batteries via metallurgical design of negative electrodes while simplifying manufacturing processes.

8.
Front Plant Sci ; 14: 1302315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192689

RESUMO

Salt stress is an ever-increasing stressor that affects both plants and humans. Therefore, developing strategies to limit the undesirable effects of salt stress is essential. Sodium ion exclusion is well known for its efficient salt-tolerance mechanism. The High-affinity K+ Transporter (HKT) excludes excess Na+ from the transpiration stream. This study identified and characterized the HKT protein family in Bienertia sinuspersici, a single-cell C4 plant. The HKT and Salt Overly Sensitive 1 (SOS1) expression levels were examined in B. sinuspersici and Arabidopsis thaliana leaves under four different salt stress conditions: 0, 100, 200, and 300 mM NaCl. Furthermore, BsHKT1;2 was cloned, thereby producing stable transgenic Brassica rapa. Our results showed that, compared to A. thaliana as a glycophyte, the HKT family is expanded in B. sinuspersici as a halophyte with three paralogs. The phylogenetic analysis revealed three paralogs belonging to the HKT subfamily I. Out of three copies, the expression of BsHKT1;2 was higher in Bienertia under control and salt stress conditions than in A. thaliana. Stable transgenic plants overexpressing 35S::BsHKT1;2 showed higher salt tolerance than non-transgenic plants. Higher biomass and longer roots were observed in the transgenic plants under salt stress than in non-transgenic plants. This study demonstrates the evolutionary and functional differences in HKT proteins between glycophytes and halophytes and associates the role of BsHKT1;2 in imparting salt tolerance and productivity.

9.
BMC Med Educ ; 22(1): 352, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538517

RESUMO

BACKGROUND: While clinical competency is crucial for traditional East-Asian medical education, available studies on the educational system for fostering clinical performance are scarce. This study aimed to review the educational system, curriculum, facilities, and management of current traditional East-Asian medicine in a well-established university of Korea and develop a Best Practice Framework (BPF) of clinical competency education. METHODS: The clinical competency education system in Pusan National University School of Korean Medicine was systematically described through 5 steps of governance of the educational system, competency of the graduates, educational resources, assessment strategies and tools, and gaps in the curriculum. We also reviewed the experiences in education and the points to be improved. RESULTS: The Office of Traditional Korean Medicine Education governs the development, implementation, and evaluation of the educational curriculum for cultivating students' clinical competency. Medical students have undertaken 39 modules of clinical biomedicine and 21 of traditional medicine during the clinical clerkship courses in an affiliated hospital, Clinical Skill Practice Center, clinical research center, practice lab for medical herb, and other locations. After training, 15 modules of simulated clinical training using standardized patients, students' clinical competency are evaluated by a Clinical Performance Test using a Clinical Performance Examination (CPX) and an Objective Structured Clinical Examination (OSCE) for biomedical and traditional medical skills. CONCLUSIONS: A clinical competency framework is required for a qualified physician of traditional East-Asian medicine. This study reviewed the current well-organized educational system of Korean traditional medicine in detail, which can be used for the BPF of competency-based clinical education. We expect the current study to be a representative reference for establishing an educational system of traditional medicine such as acupuncture and medical herbs in other countries.


Assuntos
Competência Clínica , Estudantes de Medicina , Educação Baseada em Competências , Currículo , Avaliação Educacional , Humanos
10.
ACS Appl Mater Interfaces ; 14(3): 4051-4060, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029376

RESUMO

Solid-state batteries (SSBs) with lithium metal anodes offer higher specific energy than conventional lithium-ion batteries, but they must utilize areal capacities >3 mAh cm-2 and cycle at current densities >3 mA cm-2 to achieve commercial viability. Substantial research effort has focused on increasing the rate capabilities of SSBs by mitigating detrimental processes such as lithium filament penetration and short circuiting. Less attention has been paid to understanding how areal capacity impacts lithium plating/stripping behavior in SSBs, despite the importance of areal capacity for achieving high specific energy. Here, we investigate and quantify the relationships among areal capacity, current density, and plating/stripping stability using both symmetric and full-cell configurations with a sulfide solid-state electrolyte (Li6PS5Cl). We show that unstable deposition and short circuiting readily occur at rates much lower than the measured critical current density when a sufficient areal capacity is passed. A systematic study of continuous plating under different electrochemical conditions reveals average "threshold capacity" values at different current densities, beyond which short circuiting occurs. Cycling cells below this threshold capacity significantly enhances cell lifetime, enabling stable symmetric cell cycling at 2.2 mA cm-2 without short circuiting. Finally, we show that full cells with LiNi0.8Mn0.1Co0.1O2 also exhibit threshold capacity behavior, but they tend to short circuit at lower current densities and areal capacities. Our results quantify the effects of transferred capacity and demonstrate the importance of using realistic areal capacities in experiments to develop viable solid-state batteries.

11.
Korean J Med Educ ; 33(4): 369-379, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34875153

RESUMO

PURPOSE: First-year students can form a preconception based on life experiences before entering college and identifying learners' existing characteristics can be useful foundation data for curriculum development. This study examines what preconceptions freshman students had about medicine before entering medical school. METHODS: A total of 110 first-year students were asked about what preconceptions they had about "medicine". A total of 1,124 data were used in the content analysis method. RESULTS: The results were extracted into 5, and 12 twelve categories. On the theme of "scientific discipline", the knowledge students had about general health was based on scant expertise and little evidence. Students perceived medicine as Western and scientific, considering Korean traditional medicine as unscientific. Students believed that "medical practice" should be a "disease treatment" and "patient-centered" approach rather than a "social responsibility". In "the role of the doctor", students were concerned about the doctor's being financially stable on the positive side, and about the high-intensity workload on the negative side. In "medical education", students believed that studying medicine would be "hard and difficult" because of the "importance of memorizing" and "extensive study load". In "specialty stereotype", students had biases that were mostly concentrated on "psychiatry" and "surgery". CONCLUSION: Perception of "medicine" has been revealed to a varied range of themes, but some have been inaccurate or unrealistic. These prejudices and groundless beliefs have a gap with the learning outcomes that students should achieve in the curriculum, and these preconceptions seem to have been influenced by South Korea's unique cultural context.


Assuntos
Educação de Graduação em Medicina , Educação Médica , Médicos , Estudantes de Medicina , Currículo , Humanos , Faculdades de Medicina
12.
Langmuir ; 37(32): 9755-9763, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34347501

RESUMO

Apolipoproteins have been often found to be highly enriched in the serum protein coronas produced on various engineered nanoparticles (NPs), which is also known to greatly influence the behaviors of protein corona NPs in the biological systems. As most of the apolipoproteins in blood are associated with lipoproteins, it suggests the active involvement of lipoproteins in the formation of biomolecular coronas on NPs. However, the interactions of lipoprotein complexes with NPs in the corona formation have been rarely understood. In this study, to obtain insights into the interactions, the formation of biomolecular coronas of high-density lipoproteins (HDLs) on the PEGylated gold NPs (PEG-AuNPs) of various sizes (20-150 nm dia.) was investigated as a model system. The results of this study revealed a noticeable size dependence, which is a drastic increase in the affinity of HDL for larger NPs and thus less-curved NP surfaces. For example, only a few HDLs per NP, which correspond to 5% surface coverage, were found to constitute the hard coronas of HDLs on 20 nm PEG-AuNPs, whereas 73% surface coverage was assessed for larger 150 nm PEG-AuNPs. However, the relative affinities of HDL and apolipoprotein A-1 (APOA1) examined in competition with human serum albumin exhibited the opposite size dependences, which suggests that the adsorption of HDLs is not driven by the constituent protein, APOA1. In fact, the total strength of non-covalent intermolecular interactions between a HDL particle and a NP relies on the physical contact between the two particles, which thus depends on the varying curvatures of spherical NPs in this case. Therefore, it was concluded that it is whole HDL complex that interacts with the spherical PEG-AuNPs in the initial stage of adsorption toward biomolecular coronas, which is unveiled by the distinct size dependence observed in this study.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Adsorção , Ouro , Humanos , Lipoproteínas HDL , Polietilenoglicóis
13.
Nat Mater ; 20(4): 503-510, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33510445

RESUMO

Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid-solid interfaces remains limited compared to at solid-liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.

14.
PLoS One ; 15(12): e0244205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370346

RESUMO

In view of the high homogeneity of tourism products all over the country, an attempt is made to design virtual visit tourism products with cultural experience background, which can reflect the characteristics of culture + tourism in different scenic spots, so that tourists can deeply experience the local culture. Combined with computer aided design (CAD), the virtual three-dimensional (3D) modeling system of scenic spots is designed, and VR real scene visit interactive tourism products suitable for different scenic spots are designed. 360° VR panoramic display technology is used for 360° VR panoramic video shooting and visiting system display production of Elephant Trunk Hill park scenery. A total of 157 images are collected and 720 cloud panoramic interactive H5 tool is selected to produce a display system suitable for 360° VR panoramic display of scenic spots. Meanwhile, based on single view RGB-D image, the latest convolutional neural network (CNN) algorithm and point cloud processing algorithm are used to design the indoor 3D scene reconstruction algorithm based on semantic understanding. Experiments show that the pixel accuracy and mean intersection over union of the indoor scene layout segmentation network segmentation results are 89.5% and 60.9%, respectively, that is, it has high accuracy. The VR real scene visit interactive tourism product can make tourists have a more immersive sense of interaction and experience before, during and after the tour.


Assuntos
Desenho Assistido por Computador/normas , Turismo , Realidade Virtual , Desenho Assistido por Computador/economia , Humanos , Marketing/métodos , Redes Neurais de Computação
15.
J Mass Spectrom ; 56(4): e4582, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33085179

RESUMO

Na+ -bound guanine (G)-tetrads possess square planar structures formed solely by noncovalent interactions including multiple hydrogen bonds. Unlike G-tetrads facilitated by other alkali metal ions, an intriguing behavior in collision-induced dissociation (CID) has been observed in Na+ -bound G-tetrads, which features a preferential, simultaneous loss of two G ligands in the low energy regime. To understand this unique behavior, we investigated the CID of Na+ -bound G-tetrads with mixed ligands of G and 9-methylguanine (9mG), [Na·Gm ·9mGn ]+ (m + n = 4), and [Li·9mG4 ]+ for comparison. In the CID experiments, the simultaneous losses of two ligands were by far more pronounced than the loss of a single ligand for all five Na+ -bound G-tetrads. However, it appeared that the CID of [Li·9mG4 ]+ prefers to lose single ligands sequentially. An analysis of the fragment abundances suggested that the generation of Na+ -bound dimeric fragments might have occurred with two adjacent ligands. This theoretical study predicted for [Li·9mG4 ]+ that the loss of a single ligand is more energetically favorable than the production of neutral hydrogen-bonded fragments by 35.5 kJ/mol (ΔG). This contradicts our previous calculations for [Na·9mG4 ]+ that a neutral loss of hydrogen-bonded dimers provides the lowest energy product state of Na+ -bound dimeric fragments, which is lower than that of Na+ -bound trimeric fragments by 15.6 kJ/mol. From the results, this comparative study suggests that the pronounced generation of Na+ -bound dimeric fragments in CID of the G-tetrads is likely promoted by the dissociation pathway associated with neutral loss of hydrogen-bonded dimers. It thus demonstrates that multiple hydrogen bonding participating in formation of Na+ -bound G-tetrads may also strongly influence the fate of dissociating complexes of G-tetrads.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32963570

RESUMO

INTRODUCTION: The Sasang type-specific pathophysiological symptom is pivotal for the Sasang type classification and pattern identification. The Sasang Urination and Defecation Inventory (SUDI) for urinary function analysis was developed; however, the clinical usefulness of urination-related subscales of SUDI in the Sasang type and Cold-Heat subgroup was not reported with acceptable validation analysis. METHODS: The clinical diagnosis of the Sasang type and Cold-Heat subgroup, responses to SUDI items, and weight and height of the 350 hospital patients were acquired retrospectively. The Sasang Urination Inventory (SUI) with SUI-CHR (problematic physical characteristics of urine), SUI-HSS (hypersensitivity of urinary urgency and high frequency), and SUI-DIS (urinary discomfort of hesitancy and residual urine sense) subscales using 12 items of SUDI were improvised. The item and construct validity of the SUI were examined using item response theory and confirmatory factor analysis, and the clinical usefulness of the SUI in Sasang type and Cold-Heat subgroup differentiation was attested. RESULTS: The SUI and its subscales showed acceptable structural validity and have clinical usefulness in the Tae-Eum type. The Tae-Eum type has a significantly higher SUI-CHR score than did the So-Yang type, and the Heat subgroup has a significantly higher SUI-HSS score than did the Cold subgroup in the Tae-Eum type. Discussion. The distinctive Sasang type- and Cold-Heat subscale-specific pathological symptoms in urinary function were revealed using the SUI. The SUI combined with objective Sasang typology measures might be useful for integrative precision medicine combining Eastern and Western practice and for evidence-based clinical education for medical professions.

17.
Cells ; 9(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422978

RESUMO

In this study, we investigated the functional role of isoprenylcysteine carboxyl methyltransferase (ICMT) and its methylatable substrate Ras in Toll-like receptor (TLR)-activated macrophages and in mouse inflammatory disease conditions. ICMT and RAS expressions were strongly increased in macrophages under the activation conditions of TLRs by lipopolysaccharide (LPS, a TLR4 ligand), pam3CSK (TLR2), or poly(I:C) (TLR3) and in the colons, stomachs, and livers of mice with colitis, gastritis, and hepatitis. The inhibition and activation of ICMT and Ras through genetic and pharmacological approaches significantly affected the activation of interleukin-1 receptor-associated kinase (IRAK)s, tumor necrosis factor receptor associated factor 6 (TRAF6), transforming growth factor-ß-activated kinase 1 (TAK1), mitogen-activated protein kinase (MAPK), and MAPK kinases (MAPKKs); translocation of the AP-1 family; and the expressions of inflammation-related genes that depend on both MyD88 and TRIF. Interestingly, the Ras/ICMT-mediated inflammatory reaction critically depends on the TIR domains of myeloid differentiation primary response 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-ß (TRIF). Taken together, these results suggest that ICMT and its methylated Ras play important roles in the regulation of inflammatory responses through cooperation with the TIR domain of adaptor molecules.


Assuntos
Inflamação/enzimologia , Proteínas Metiltransferases/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/patologia , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos , Macrófagos/enzimologia , Masculino , Metilação , Camundongos , Modelos Biológicos , Fator 88 de Diferenciação Mieloide/metabolismo , Células RAW 264.7 , Especificidade por Substrato , Fator de Transcrição AP-1/metabolismo , Proteínas ras/metabolismo
18.
Sci Rep ; 9(1): 19640, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873131

RESUMO

Bienertia sinuspersici is a single-cell C4 plant species of which chlorenchyma cells have two distinct groups of chloroplasts spatially segregated in the cytoplasm. The central vacuole encloses most chloroplasts at the cell center and confines the rest of the chloroplasts near the plasma membrane. Young chlorenchyma cells, however, do not have large vacuoles and their chloroplasts are homogenous. Therefore, maturing Bienertia chlorenchyma cells provide a unique opportunity to investigate chloroplast proliferation in the central cluster and the remodeling of chloroplasts that have been displaced by the vacuole to the cell periphery. Chloroplast numbers and sizes increased, more notably, during later stages of maturation than the early stages. Electron tomography analyses indicated that chloroplast enlargement is sustained by thylakoid growth and that invaginations from the inner envelope membrane contributed to thylakoid assembly. Grana stacks acquired more layers, differentiating them from stroma thylakoids as central chloroplasts matured. In peripheral chloroplasts, however, grana stacks stretched out to a degree that the distinction between grana stacks and stroma thylakoids was obscured. In central chloroplasts undergoing division, thylakoids inside the cleavage furrow were kinked and severed. Grana stacks in the division zone were disrupted, and large complexes in their membranes were dislocated, suggesting the existence of a thylakoid fission machinery.


Assuntos
Chenopodiaceae , Tomografia com Microscopia Eletrônica , Fotossíntese , Tilacoides , Chenopodiaceae/metabolismo , Chenopodiaceae/ultraestrutura , Tilacoides/metabolismo , Tilacoides/ultraestrutura
19.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426336

RESUMO

Reactive oxygen species (ROS) are generated from diverse cellular processes or external sources such as chemicals, pollutants, or ultraviolet (UV) irradiation. Accumulation of radicals causes cell damage that can result in degenerative diseases. Antioxidants remove radicals by eliminating unpaired electrons from other molecules. In skin health, antioxidants are essential to protect cells from the environment and prevent skin aging. (-)-Epigallocatechin-3-(3″-O-methyl) gallate (3″Me-EGCG) has been found in limited oolong teas or green teas with distinctive methylated form, but its precise activities have not been fully elucidated. In this study, we examined the antioxidant roles of 3″Me-EGCG in keratinocytes (HaCaT cells). 3″Me-EGCG showed scavenging effects in cell and cell-free systems. Under H2O2 exposure, 3″Me-EGCG recovered cell viability and increased the expression of heme oxygenase 1 (HO-1). Under ultraviolet B (UVB) and sodium nitroprusside (SNP) exposure, 3″Me-EGCG protected keratinocytes and regulated the survival protein AKT1. By regulating the AKT1/NF-κB pathway, 3″Me-EGCG augmented cell survival and proliferation in HaCaT cells. These results indicate that 3″Me-EGCG exhibits antioxidant properties, resulting in cytoprotection against various external stimuli. In conclusion, our findings suggest that 3″Me-EGCG can be used as an ingredient of cosmetic products or health supplements.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Citoproteção/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Queratinócitos/efeitos dos fármacos , Antioxidantes/química , Catequina/química , Catequina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Citoproteção/efeitos da radiação , Ácido Gálico/química , Ácido Gálico/farmacologia , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos
20.
Integr Med Res ; 8(2): 82-88, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31080732

RESUMO

BACKGROUND: The pathophysiological symptom of Sasang typology is essential for getting clinical diagnosis and analyzing treatment effects. The clinical index for examining urination and defecation related symptoms were developed and validated with established clinical measures. METHODS: Questionnaire items of six subscales of Sasang Urination and Defecation Inventory (SUDI) were developed based on previous systematic reviews, and its clinical validity was examined with clinical measures of Urogenital Distress Inventory-6 (UDI-6), Overactive Bladder Symptom Score (OBSS), and ROME 3 criteria for Irritable Bowel Syndrome (ROME3-IBS) and Functional Constipation (ROME3-FC) using 48 healthy participants. The internal consistency of six subscales of SUDI were examined with Cronbach alpha. The Pearson correlation was used to examine correlation between SUDI and Western clinical measures, and the ANOVA was adopted to investigate differences among Sasang type groups in clinical measures. RESULTS: The SUDI-UCHR (problematic characteristics of urine) and SUDI-ANMD (defecation anomaly discomfort) were found to represent unique concept of traditional Korean medicine, however SUDI-IRRB (irritability of bowel movement) and SUDI-FCON (functional constipation) were similar with functional gastrointestinal disease of western medicine. SUDI-URET (ability to retain urine), SUDI-UDIS (urinary discomfort) and SUDI-ANMD of So-Yang type (7.95 ± 2.16, 14.33 ± 2.01, and 13.10 ± 2.57) are significantly different from those of So-Eum type (9.94 ± 2.54, 12.18 ± 2.96, and 10.59 ± 3.47, respectively). CONCLUSION: The pathophysiological symptoms of urination and defecation in Sasang typology were systematically scrutinized, and summarized into six subscales of SUDI in this study. The SUDI would be useful for analyzing clinical symptoms of Sasang typology along with integrative collaboration of traditional Korean and Western medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA