Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(5): e535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741887

RESUMO

Cholangiocarcinoma (CCA) is characterized by rapid onset and high chance of metastasis. Therefore, identification of novel therapeutic targets is imperative. E26 transformation-specific homologous factor (EHF), a member of the E26 transformation-specific transcription factor family, plays a pivotal role in epithelial cell differentiation and cancer progression. However, its precise role in CCA remains unclear. In this study, through in vitro and in vivo experiments, we demonstrated that EHF plays a profound role in promoting CCA by transcriptional activation of glioma-associated oncogene homolog 1 (GLI1). Moreover, EHF significantly recruited and activated tumor-associated macrophages (TAMs) through the C-C motif chemokine 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis, thereby remodeling the tumor microenvironment. In human CCA tissues, EHF expression was positively correlated with GLI1 and CCL2 expression, and patients with co-expression of EHF/GLI1 or EHF/CCL2 had the most adverse prognosis. Furthermore, the combination of the GLI1 inhibitor, GANT58, and CCR2 inhibitor, INCB3344, substantially reduced the occurrence of EHF-mediated CCA. In summary, our findings suggest that EHF is a potential prognostic biomarker for patients with CCA, while also advocating the therapeutic approach of combined targeting of GLI1 and CCL2/CCR2-TAMs to inhibit EHF-driven CCA development.

2.
Clin Transl Med ; 14(2): e1592, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363102

RESUMO

BACKGROUND: Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes. MAIN BODY: In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment. CONCLUSION: This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.


Assuntos
Neoplasias , Proteostase , Humanos , Chaperonina com TCP-1/química , Chaperonina com TCP-1/metabolismo , Dobramento de Proteína
3.
Adv Sci (Weinh) ; 11(13): e2307242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247171

RESUMO

N6-methyladenosine (m6A) modification orchestrates cancer formation and progression by affecting the tumor microenvironment (TME). For hepatocellular carcinoma (HCC), immune evasion and angiogenesis are characteristic features of its TME. The role of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), as an m6A reader, in regulating HCC TME are not fully understood. Herein, it is discovered that trimethylated histone H3 lysine 4 and H3 lysine 27 acetylation modification in the promoter region of YTHDF2 enhanced its expression in HCC, and upregulated YTHDF2 in HCC predicted a worse prognosis. Animal experiments demonstrated that Ythdf2 depletion inhibited spontaneous HCC formation, while its overexpression promoted xenografted HCC progression. Mechanistically, YTHDF2 recognized the m6A modification in the 5'-untranslational region of ETS variant transcription factor 5 (ETV5) mRNA and recruited eukaryotic translation initiation factor 3 subunit B to facilitate its translation. Elevated ETV5 expression induced the transcription of programmed death ligand-1 and vascular endothelial growth factor A, thereby promoting HCC immune evasion and angiogenesis. Targeting YTHDF2 via small interference RNA-containing aptamer/liposomes successfully both inhibited HCC immune evasion and angiogenesis. Together, this findings reveal the potential application of YTHDF2 in HCC prognosis and targeted treatment.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Animais , Angiogênese , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Lisina , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/metabolismo
4.
Adv Sci (Weinh) ; 10(17): e2207080, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37096833

RESUMO

Bone is the second leading metastatic site for hepatocellular carcinoma (HCC). Patients with HCC and bone metastasis suffer poor quality of life and reduced survival time. Extracellular vesicles (EVs) are widely involved in HCC formation and metastasis. However, the communication between primary HCC and bone lesions mediated by EVs remains unclear and the possible effect of bone metastasis on the progression of HCC remains largely unknown. Here, bone-metastasized HCC-derived EVs (BM-EVs) are found to localize to orthotropic HCC cells and promote HCC progression. Mechanistically, miR-3190-5p (miR-3190) is upregulated in intracellular HCC cells isolated from bone lesions as well as in their derived EVs. miR-3190 in BM-EVs is transferred into orthotopic tumor cells and enhances their metastatic capacity by downregulating AlkB homolog 5 (ALKBH5) expression. Decreased level of ALKBH5 exacerbates the prometastatic characteristics of HCC by modulating gene expression in N6-methyladenosine-dependent and -independent ways. Finally, antagomir-miR-3190-loaded liposomes with HCC affinity successfully suppress HCC progression in mice treated with BM-EVs. These findings reveal that BM-EVs initiate prometastatic cascades in orthotopic HCC by transferring ALKBH5-targeting miR-3190 and miR-3190 is serving as a promising therapeutic target for inhibiting the progression of HCC in patients with bone metastasis.


Assuntos
Neoplasias Ósseas , Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
5.
J Biomed Sci ; 30(1): 17, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872348

RESUMO

E26 transformation-specific (ETS) transcription variant 5 (ETV5), also known as ETS-related molecule (ERM), exerts versatile functions in normal physiological processes, including branching morphogenesis, neural system development, fertility, embryonic development, immune regulation, and cell metabolism. In addition, ETV5 is repeatedly found to be overexpressed in multiple malignant tumors, where it is involved in cancer progression as an oncogenic transcription factor. Its roles in cancer metastasis, proliferation, oxidative stress response and drug resistance indicate that it is a potential prognostic biomarker, as well as a therapeutic target for cancer treatment. Post-translational modifications, gene fusion events, sophisticated cellular signaling crosstalk and non-coding RNAs contribute to the dysregulation and abnormal activities of ETV5. However, few studies to date systematically summarized the role and molecular mechanisms of ETV5 in benign diseases and in oncogenic progression. In this review, we specify the molecular structure and post-translational modifications of ETV5. In addition, its critical roles in benign and malignant diseases are summarized to draw a panorama for specialists and clinicians. The updated molecular mechanisms of ETV5 in cancer biology and tumor progression are delineated. Finally, we prospect the further direction of ETV5 research in oncology and its potential translational applications in the clinic.


Assuntos
Neoplasias , Feminino , Humanos , Gravidez , Morfogênese/genética , Neoplasias/genética , Estresse Oxidativo , Processamento de Proteína Pós-Traducional
6.
Hepatology ; 78(5): 1384-1401, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631007

RESUMO

BACKGROUND AND AIMS: HCC is a highly heterogeneous disease that is caused largely by genomic copy number variations. Herein, the mechanistic and therapeutically targeted role of vacuolar protein sorting 72 homologue (VPS72), a novel copy number variation cis-driven gained gene identified by genome-wide copy number variation and transcriptome analyses in HCC, is not well understood. APPROACH AND RESULTS: First, overexpression of VPS72 enhanced the initiation and progression of HCC in vitro and in vivo . Mechanistically, VPS72 interacted with the oncoproteins MYC and actin-like 6A (ACTL6A) and promoted the formation of the ACTL6A/MYC complex. Furthermore, ACTL6A regulated VPS72 protein stability by weakening the interaction between tripartite motif containing 21 (TRIM21) and VPS72. Thus, the interaction between VPS72 and ACTL6A enhanced the affinity of MYC for its target gene promoters and promoted their transcription, thereby contributing to HCC progression, which was inhibited by adeno-associated virus serotype 8 (AAV8)-mediated short hairpin RNA (shRNA) against VPS72. CONCLUSIONS: This study reveals the molecular mechanism of ACTL6A/VPS72/MYC in HCC, providing a theoretical basis and therapeutic target for this malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Actinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Progressão da Doença , Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Repressoras/metabolismo
7.
Front Med ; 16(4): 551-573, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35852753

RESUMO

Patients with hepatocellular carcinoma (HCC) and bone metastasis (BM) suffer from greatly reduced life quality and a dismal prognosis. However, BM in HCC has long been overlooked possibly due to its relatively low prevalence in previous decades. To date, no consensus or guidelines have been reached or formulated for the prevention and management of HCC BM. Our narrative review manifests the increasing incidence of HCC BM to sound the alarm for additional attention. The risk factors, diagnosis, prognosis, and therapeutic approaches of HCC BM are detailed to provide a panoramic view of this disease to clinicians and specialists. We further delineate an informative cancer bone metastatic cascade based on evidence from recent studies and point out the main factors responsible for the tumor-associated disruption of bone homeostasis and the formation of skeletal cancer lesions. We also present the advances in the pathological and molecular mechanisms of HCC BM to shed light on translational opportunities. Dilemmas and challenges in the treatment and investigation of HCC BM are outlined and discussed to encourage further endeavors in the exploration of underlying pathogenic and molecular mechanisms, as well as the development of novel effective therapies for HCC patients with BM.


Assuntos
Neoplasias Ósseas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Ósseas/secundário , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Prognóstico
8.
Cell Biosci ; 12(1): 55, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526051

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with high mortality. Advanced stage upon diagnosis and cancer metastasis are the main reasons for the dismal prognosis of HCC in large part. The role of proliferation associated protein 2G4 (PA2G4) in tumorigenesis and cancer progression has been widely investigated in various cancers. However, whether and how PA2G4 participates in HCC metastasis is still underexplored. RESULTS: We found that the mRNA and protein levels of PA2G4 were higher in HCC samples than in normal liver tissues, and high expression of PA2G4 in HCC was correlated with a poor prognosis, by an integrative analysis of immunohistochemistry (IHC), western blot and bioinformatic approach. Moreover, the expression of PA2G4 was elevated in HCC patients with metastases than those metastasis-free. Cell migration, invasion, phalloidin staining and western blot analyses demonstrated that PA2G4 promoted epithelial to mesenchymal transition (EMT) of HCC cells in vitro. And a lung metastasis animal model exhibited that PA2G4 enhanced metastatic ability of HCC cells in vivo. RNA-sequencing combined with dual luciferase reporter assay and evaluation of mRNA half-time indicated that PA2G4 increased FYN expression by stabilizing its mRNA transcript. Recovering the impaired FYN level induced by PA2G4 knockdown rescued the impeded cell mobilities. Furthermore, endogenous immunoprecipitation (IP) and in-situ immunofluorescence (IF) showed that YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) was the endogenous binding patterner of PA2G4. In addition, RNA binding protein immunoprecipitation (RIP) and anti- N6-methyladenosine immunoprecipitation (MeRIP) assays demonstrated that FYN mRNA was N6-methyladenosine (m6A) modified and bound with PA2G4, as well as YTHDF2. Moreover, the m6A catalytic ability of YTHDF2 was found indispensable for the regulation of FYN by PA2G4. At last, the correlation of expression levels between PA2G4 and FYN in HCC tissues was verified by IHC and western blot analysis. CONCLUSIONS: These results indicate that PA2G4 plays a pro-metastatic role by increasing FYN expression through binding with YTHDF2 in HCC. PA2G4 may become a reliable prognostic marker or therapeutic target for HCC patients.

9.
Front Mol Biosci ; 8: 670241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095224

RESUMO

Hepatocellular carcinoma (HCC) has been recognized as the third leading cause of cancer-related deaths worldwide. There is increasing evidence that the abnormal expression of autophagy-related genes plays an important role in the occurrence and development of HCC. Therefore, the study of autophagy-related genes can further elucidate the genetic drivers of cancer and provide valuable therapeutic targets for clinical treatment. In this study, we used 232 autophagy-related genes extracted from the Human Autophagy Database (HADb) and Molecular Signatures Database (MSigDB) to construct 1884 autophagy-related gene pairs. On this basis, we developed a prognostic model based on autophagy-related gene pairs using least absolute shrinkage and selection operator (LASSO) Cox regression to evaluate the prognosis of patients after liver cancer resection. We then used 845 liver cancer samples from three different databases to test the reliability of the risk signature through survival analysis, receiver operating characteristic (ROC) curve analysis, univariate and multivariate analysis. To further explore the underlying biological mechanisms, we conducted an enrichment analysis of autophagy-related genes. Finally, we combined the signature with independent prognostic factors to construct a nomogram. Based on the autophagy-related gene pair (ARGP) signature, we can divide patients into high- or low-risk groups. Survival analysis and ROC curve analysis verified the validity of the signature (AUC: 0.786-0.828). Multivariate Cox regression showed that the risk score can be used as an independent predictor of the clinical outcomes of liver cancer patients. Notably, this model has a more accurate predictive effect than most prognostic models for hepatocellular carcinoma. Moreover, our model is a powerful supplement to the HCC staging indicator, and a nomogram comprising both indicators can provide a better prognostic effect. Based on pairs of multiple autophagy-related genes, we proposed a prognostic model for predicting the overall survival rate of HCC patients after surgery, which is a promising prognostic indicator. This study confirms the importance of autophagy in the occurrence and development of HCC, and also provides potential biomarkers for targeted treatments.

10.
Front Oncol ; 10: 617837, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520726

RESUMO

Exosomes are small membranous vesicles released by many kinds of cells, and are indispensable in cell-to-cell communication by delivering functional biological components both locally and systemically. Long non-coding RNAs (lncRNAs) are long transcripts over 200 nucleotides that exhibit no or limited protein-coding potentials. LncRNAs are dramatic gene expression regulators, and can be selectively sorted into exosomes. Exosomal lncRNAs derived from cancer cells and stromal cells can mediate the generation of pre-metastatic niches (PMNs) and thus promote the progression of cancer. In this review, we summarized the fundamental biology and characteristics of exosomal lncRNAs. Besides, we provided an overview of current research on functions of exosomal lncRNAs between cancer cells and non-cancer cells. A deep understanding of exosomal lncRNAs' role in cancer will be facilitated to find important implications for cancer development and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA