RESUMO
Constructing local microenvironments is one of the important strategies to improve the electrocatalytic performances, such as in electrochemical CO2 reduction (ECR). However, effectively customizing these microenvironments remains a significant challenge. Herein, utilizing carbon nanotube (CNT) heterostructured semi-open Co-N2O2 catalytic configurations (Co-salophen), we have demonstrated the role of the local microenvironment on promoting ECR through regulating the location of hydroxyl groups. Concretely, compared with the maximum Faradaic efficiency (FE) of 62% for carbon monoxide (CO) presented by Co-salophen/CNT without a hydroxyl microenvironment, the designed Co-salophen-OH3/CNT, featuring hydroxyl groups at the Co-N2O2 structural opening, shows remarkable CO2-to-CO electroreduction activity across a wide potential window, with the FE of CO up to 95%. In particular, through the deuterium kinetic isotope experiments and theoretical calculations, we decoded that the hydroxyl groups act as a proton relay station, promoting the efficient transfer of protons to the Co-N2O2 active sites. The finding demonstrates a promising molecular design strategy for enhancing electrocatalysis.
RESUMO
Covalent organic frameworks are a type of crystalline porous materials that linked through covalent bond, and they have numerous potential applications in adsorption, separation, catalysis, and more. However, there are rarely relevant reported on photochromism. Fortunately, a hydrazone-linked DBTB-DETH-COF is rapidly generated through ultrasound method. The DBTB-DETH-COF is found to exhibit reversible photochromism (at least 50 cycles) from yellow to olive in the presence of light and air, and subsequently back to the original color upon heating. In addition, the structure of DBTB-DETH-COF remains unchanged after 15 days of light illumination. Furthermore, the reason of photochromic process is discussed by electron paramagnetic resonance, X-ray photoelectron spectroscopy, electrochemistry characterizations and transient absorption measurements. The reversible photochromic DBTB-DETH-COF can be used as anti-counterfeiting ink and optical switch in the presence of air. This work expands a stable organic photochromic material and broadens the applications of COFs.
RESUMO
BACKGROUND: In patients with human epidermal growth factor receptor 2 (HER2)-overexpressing gastric cancer (GC), the combination of HER2 targeting and a standard first-line chemotherapy regimen has been demonstrated to significantly improve their prognosis. However, in a proportion of patients, cancer progresses within a short period of time, and there is currently no standard treatment after disease progression. CASE SUMMARY: This study presents a case of a 51-year-old male with advanced GC who underwent radical resection (Billroth type II subtotal gastrectomy and gastrojejunostomy) and resection of liver metastases. Immunohistochemical staining revealed a HER2 score of 2+, a dMMR status, and a Ki67 proliferation index of 30% to 40%. The gene test results indicated the presence of ERBB2 amplification and a PD-L1 expression level of less than 5%. Since December 2021, the patient has experienced disease progression during both first-line (two cycles of KN026 combined with KN046) and second-line (five cycles of nivolumab combined with trastuzumab and SOX chemotherapy) treatment regimens. The patient's prognosis following the first and second lines of treatment was unfavorable, with progression occurring in a relatively short time. For third-line therapy, disitamab vedotin (RC48) plus apatinib was used. At the time of this report, the patient had achieved a progression-free survival (PFS) of 25.8 months, which exceeded the median survival time for patients with advanced GC. CONCLUSION: Despite the unfavorable prognosis associated with advanced GC, the implementation of personalized treatment approaches may still prove beneficial for select patients. In patients with HER2-positive GC with extensive metastatic involvement, the use of the HER2-targeted combination with apatinib has demonstrated the potential to prolong both PFS and overall survival.
RESUMO
Pancreatic cancer (PC) is an extremely lethal malignant tumor. The Hedgehog (Hh) signaling pathway is implicated in embryonic development, regulation of tumor stem cells, and modulation of the tumor microenvironment. Aberrant activation of Hh pathway leads to the development of multiple malignant tumors, especially Hh-driven PC. Targeting the molecular regulation of the Hh signaling pathway presents a promising therapeutic strategy for PC treatment. Hence, there is a high demand for novel molecules that inhibit the Hh pathway. In this study, the Hh pathway inhibitors bearing pyridyl pyrimidine skeleton were designed, synthesized, and characterized. Among them, N-(4-((dimethylamino)methyl)phenyl)-4-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)benzamide (B31) emerged as the most potent analog following screening with a Gli luciferase reporter assay, competing with cyclopamine in the binding site of Smo protein. Molecular simulation revealed that B31 interacts with Smo through hydrogen bonds, hydrophobic interactions, and electrostatic forces. B31 inhibited PC cell proliferation, migration, and induced apoptosis by suppressing Gli1 expression at both the transcriptional and translational levels. Moreover, B31 significantly regressed subcutaneous tumors formed by BxPC-3 cells in nude mice without inducing toxic effects. These results underscore the enhanced efficacy of B31 in the PC model and offer a new avenue for developing effective Hh pathway inhibitors for clinical PC treatment.
RESUMO
Ambient electrochemical reduction of waste nitrate (NO3-) represents an alternative green route for sustainable ammonia (NH3) electrosynthesis in water. Despites some encouraged achievements, sluggish eight electron and nine proton reduction routes that involve multi-step hydrogenation pathways have severely hindered their NH3 Faradaic efficiency (FENH3) and yield rate. Herein, we develop a robust two-dimensional mesoporous cobalt-copper (meso-CoCu) nanoplate electrocatalyst that delivers excellent performance of complete NO3- reduction reaction (NO3RR), including superior FENH3 of 98.8%, high NH3 yield rate of 3.39 mol h-1 g-1 and energy efficiency of 49.8%, and good cycling stability. Mechanism investigations unveil that active hydrogen (*H) radicals produced from water splitting on Co sites spillover to adjacent Cu sites and further stabilize within confined mesopores, which kinetically promote its coupling hydrogenation reactions of nitrogen intermediates and thus facilitate complete NO3RR for favorable NH3 electrosynthesis. Moreover, meso-CoCu nanoplates perform well as a bifunctional electrocatalyst in the two-electrode coupling system that concurrently synthesizes NH3 from NO3- at cathode and 2,5-furanedicarboxylic acid from 5-hydroxymethylfurfural at anode. This work in stabilizing *H radicals in mesoporous microenvironment provides some insights applied to various hydrogenation reactions for selective electrosynthesis of highly value-added chemicals in water.
RESUMO
OBJECTIVE: To explore the feasibility and safety of integrating the geriatric intensive care unit (GICU) into the friendly management model of the elderly critically ill patients. METHODS: A prospective controlled study was conducted. Patients with elderly critically ill admitted to the GICU and the general intensive care unit (ICU) of Jintan First People's Hospital of Changzhou from December 2021 to May 2023 were enrolled. Patients in the ICU group received the traditional intensive care and nursing mode. In addition to the ICU group basic medical care measures, the patients in the GICU group were treated with friendly management models such as flexible visitation, diagnosis and treatment environment optimization, caring diagnosis and treatment, and family participation in hospice care according to their condition assessment. The gender, age, main diagnosis, and acute physiology and chronic health evaluation II (APACHE II) at admission were recorded and compared between the two groups. During the treatment period, the incidence of nosocomial infection, unplanned extubation, falling out of bed/fall, unexpected readmission to ICU/GICU, and ICU/GICU mortality, the incidence of post-intensive care syndrome (PICS), the satisfaction rate of patients/families with medical care, and the satisfaction rate of patients/families with diagnosis and treatment environment were recorded and compared between the two groups. RESULTS: According to the admission criteria for ICU and GICU, as well as the willingness of the patients and/or their families, a total of 59 patients were finally included in the ICU group, and 48 patients were enrolled in the GICU group. There were no significantly differences in gender, age, main diagnosis and APACHE II score between the two groups, and there were comparability. There were no significantly differences in the incidence of adverse events such as nosocomial infection [13.6% (8/59) vs. 12.5% (6/48)], unplanned extubation [5.1% (3/59) vs. 6.2% (3/48)], falling out of bed/fall [3.4% (2/59) vs. 0% (0/48)], unexpected readmission to ICU/GICU [8.5% (5/59) vs. 10.4% (5/48)], and ICU/GICU mortality [6.8% (4/59) vs. 6.2 (3/48)] between the ICU group and GICU group (all P > 0.05). Compared with the ICU group, the incidence of PICS in GICU group was significantly lower [8.3% (4/48) vs. 25.4% (15/59), P < 0.05], the satisfaction rate of patients/families with medical care [89.6% (43/48) vs. 74.6% (44/59)] and satisfaction rate of patients/families with diagnosis and treatment environment [87.5% (42/48) vs. 67.8% (40/59)] were significantly increased (both P < 0.05). CONCLUSIONS: The use GICU as a friendly management model for elderly critically ill patients is feasible and safe, and it is worthy of further exploration and research.
Assuntos
APACHE , Estado Terminal , Unidades de Terapia Intensiva , Humanos , Estudos Prospectivos , Unidades de Terapia Intensiva/organização & administração , Idoso , Masculino , Feminino , Cuidados Críticos , Estudos de Viabilidade , Infecção Hospitalar , Idoso de 80 Anos ou maisRESUMO
Introduction: Sclerotherapy is a commonly utilized treatment approach for venous malformations. Absolute ethanol is renowned for its remarkable efficacy as a potent sclerosants, but it is potentially associated with severe complications. Foam sclerotherapy is considered superior to liquid sclerotherapy owing to its heightened efficacy and diminished incidence of complications. Thus, our objective was to devise an ethanol foam sclerosant that delivers exceptional efficacy while mitigating complications. Methods: In the first set of experiments, we identified the suitable range of ethanol concentrations for sclerotherapy through human umbilical vein endothelial cell proliferation assays and blood clotting experiments. Next, the surfactants polysorbate 80, egg yolk lecithin, and hyaluronic acid were added to create stable ethanol foam, with their ratios meticulously optimized. Results: The optimal concentration range of ethanol was determined to be 30-60%. Eventually, a 48% ethanol foam was successfully produced with excellent stability. Other than ethanol, the formulation included 5 × 10-3 g/mL polysorbate 80, 10-2 g/mL egg yolk lecithin, and 0.04 mL/mL hyaluronic acid. Discussion: The novel ethanol foam produced here could be a promising candidate for the treatment of venous malformations.
RESUMO
BACKGROUND: Elevated soluble stimulating factor 2 (sST2) level is observed in cardiovascular diseases, such as heart failure and acute coronary syndrome, which reflects myocardial fibrosis and hypertrophy, indicating adverse clinical outcomes. However, the association between sST2 and hypertensive heart disease are less understood. This study aimed to determine the relationship of sST2 with left ventricular hypertrophy (LVH) and geometric remodeling in essential hypertension (EH). METHODS: We enrolled 483 patients (aged 18-80 years; 51.35% female). sST2 measurements and echocardiographic analyses were performed. RESULTS: Stepwise multiple linear regression analysis showed significant associations between sST2, left ventricular (LV) mass, and LV mass index. The prevalence of LVH and concentric hypertrophy (CH) increased with higher sST2 grade levels (p for trend<0.05). Logistic regression analysis suggested that the highest tertile of sST2 was significantly associated with increased LVH risk, compared with the lowest tertile (multivariate-adjusted odds ratio [OR] of highest group: 6.61; p<0.001). Similar results were observed in the left ventricular geometric remodeling; the highest tertile of sST2 was significantly associated with increased CH risk (multivariate-adjusted OR of highest group: 5.80; p<0.001). The receiver operating characteristic analysis results revealed that sST2 had potential predictive value for LVH (area under the curve [AUC]: 0.752, 95% confidence interval [CI]: 0.704-0.800) and CH (AUC: 0.750, 95% CI: 0.699-0.802) in patients with EH. CONCLUSIONS: High sST2 level is strongly related to LVH and CH in patients with EH and can be used as a biomarker for the diagnosis and risk assessment of hypertensive heart disease.
RESUMO
Sialadenitis is a prevalent salivary gland disease resulting in decreased salivary flow rate. To date, little is known about the exact changes and mechanism of ductal cells in sialadenitis. This study aims to establish an efficient method to identify and isolate ductal cells, thereby facilitating further research on this specific cell type. Immunofluorescence for cytokeratin 13 and cytokeratin 19 was conducted in salivary glands to confirm their specificity as ductal cell markers. The dissected ducts were assessed through PCR and Western blot of cytokeratin 19 and digested by dispase and collagenase. The functionality of the isolated ductal cells was determined by measuring intracellular calcium. Cytokeratin 19 and cytokeratin 13 were expressed in all segments of human ducts. Cytokeratin 19 was limited to ducts excluding granular convoluted tubules in rat and mouse. The purities of the obtained ductal cells were approximately 98% in humans and 93% in rats. Furthermore, intracellular free calcium increased with time and concentration of carbachol treatment. Cytokeratin 19 serves as a dependable marker for identifying ductal cells in salivary glands, except for granular convoluted tubules. Moreover, we have successfully developed an efficient method for isolating ductal cells from salivary glands.
Assuntos
Células Epiteliais , Glândulas Salivares , Animais , Humanos , Ratos , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Células Cultivadas , Masculino , Feminino , Ratos Sprague-Dawley , Cálcio/metabolismo , Cálcio/análise , Adulto , Queratina-19/metabolismo , Queratina-19/análise , Ductos Salivares/metabolismo , Ductos Salivares/citologia , Ductos Salivares/patologia , Pessoa de Meia-IdadeRESUMO
PURPOSE: Immunohistochemical staining of programmed death-ligand 1 (PD-L1) in tumor biopsies acquired through invasive procedures is routinely employed in clinical practice to identify patients who are most likely to benefit from anti-programmed cell death protein 1 (PD-1) therapy. Nevertheless, PD-L1 expression is observed in various cellular subsets within tumors and their microenvironments, including tumor cells, dendritic cells, and macrophages. The impact of PD-L1 expression across these different cell types on the responsiveness to anti-PD-1 treatment is yet to be fully understood. METHODS: We synthesized polymer-based lysosome-targeting chimeras (LYTACs) that incorporate both PD-L1-targeting motifs and liver cell-specific asialoglycoprotein receptor (ASGPR) recognition elements. Small-animal positron emission tomography (PET) imaging of PD-L1 expression was also conducted using a PD-L1-specific radiotracer 89Zr-αPD-L1/Fab. RESULTS: The PD-L1 LYTAC platform was capable of specifically degrading PD-L1 expressed on liver cancer cells through the lysosomal degradation pathway via ASGPR without impacting the PD-L1 expression on host cells. When coupled with whole-body PD-L1 PET imaging, our studies revealed that host cell PD-L1, rather than tumor cell PD-L1, is pivotal in the antitumor response to anti-PD-1 therapy in a mouse model of liver cancer. CONCLUSION: The LYTAC strategy, enhanced by PET imaging, has the potential to surmount the limitations of knockout mouse models and to provide a versatile approach for the selective degradation of target proteins in vivo. This could significantly aid in the investigation of the roles and mechanisms of protein functions associated with specific cell subsets in living subjects.
Assuntos
Antígeno B7-H1 , Tomografia por Emissão de Pósitrons , Proteólise , Animais , Antígeno B7-H1/metabolismo , Camundongos , Humanos , Proteólise/efeitos dos fármacos , Lisossomos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linhagem Celular Tumoral , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Resultado do Tratamento , Receptor de Asialoglicoproteína/metabolismoRESUMO
Verticillium wilt, caused by Verticillium dahliae, is a soil-borne disease affecting eggplant. Wild eggplant, recognized as an excellent disease-resistant resource against verticillium wilt, plays a pivotal role in grafting and breeding for disease resistance. However, the underlying resistance mechanisms of wild eggplant remain poorly understood. This study compared two wild eggplant varieties, LC-2 (high resistance) and LC-7 (sensitive) at the phenotypic, transcriptomic, and metabolomic levels to determine the molecular basis of their resistance to verticillium wilt. These two varieties exhibit substantial phenotypic differences in petal color, leaf spines, and fruit traits. Following inoculation with V. dahliae, LC-2 demonstrated significantly higher activities of polyphenol oxidase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, ß-1,3 glucanase, and chitinase than did LC-7. RNA sequencing revealed 4,017 differentially expressed genes (DEGs), with a significant portion implicated in processes associated with disease resistance and growth. These processes encompassed defense responses, cell wall biogenesis, developmental processes, and biosynthesis of spermidine, cinnamic acid, and cutin. A gene co-expression analysis identified 13 transcription factors as hub genes in modules related to plant defense response. Some genes exhibited distinct expression patterns between LC-2 and LC-7, suggesting their crucial roles in responding to infection. Further, metabolome analysis identified 549 differentially accumulated metabolites (DAMs) between LC-2 and LC-7, primarily consisting of compounds such as flavonoids, phenolic acids, lipids, and other metabolites. Integrated transcriptome and metabolome analyses revealed the association of 35 gene-metabolite pairs in modules related to the plant defense response, highlighting the interconnected processes underlying the plant defense response. These findings characterize the molecular basis of LC-2 resistance to verticillium wilt and thus have potential value for future breeding of wilt-resistant eggplant varieties.
RESUMO
Most known chemiluminescence (CL) systems are flash-type that generate weak luminescence and decline quickly after dozens of seconds, while the glow-type CL systems have stable emission for an extended period to achieve accurate quantitation. In this work, a long-term CL system based on hydrazine-hydrate (N2H4·H2O) modified carbon quantum dots (N-CQDs) as a luminescent probe, with K2S2O8 and H2O2 as co-reactants, was proposed. The CL emission enhanced by H2O2 increased 18-fold more than that of N-CQDs and K2S2O8 direct reaction, and decayed by 5% of the maximum intensity over 700 s. In the reaction system, K2S2O8 and H2O2 co-reactants can promote each other to continuously generate corresponding radicals (â¢OH, O2â¢-, 1O2), which in turn trigger the CL emission of N-CQDs. This phenomenon was identified as the primary cause for the production of persistent CL. In addition, a stable and selective CL sensor based on the N-CQDs-K2S2O8-H2O2 CL enhancing system was developed for ascorbic acid quantitation in the linear range from 0.1 to 10.0 mM with a detection limit of 0.036 mM. The method has been applied to the analysis of tablet samples and holds potential in pharmaceutical analysis field.
RESUMO
The gut microbiota significantly influences host physiology and provides essential ecosystem services. While diet can affect the composition of the gut microbiota, the gut microbiota can also help the host adapt to specific dietary habits. The carrion crow ( Corvus corone), an urban facultative scavenger bird, hosts an abundance of pathogens due to its scavenging behavior. Despite this, carrion crows infrequently exhibit illness, a phenomenon related to their unique physiological adaptability. At present, however, the role of the gut microbiota remains incompletely understood. In this study, we performed a comparative analysis using 16S rRNA amplicon sequencing technology to assess colonic content in carrion crows and 16 other bird species with different diets in Beijing, China. Our findings revealed that the dominant gut microbiota in carrion crows was primarily composed of Proteobacteria (75.51%) and Firmicutes (22.37%). Significant differences were observed in the relative abundance of Enterococcus faecalis among groups, highlighting its potential as a biomarker of facultative scavenging behavior in carrion crows. Subsequently, E. faecalis isolated from carrion crows was transplanted into model mice to explore the protective effects of this bacterial community against Salmonella enterica infection. Results showed that E. faecalis down-regulated the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and interleukin 6 (IL-6), prevented S. enterica colonization, and regulated the composition of gut microbiota in mice, thereby modulating the host's immune regulatory capacity. Therefore, E. faecalis exerts immunoregulatory and anti-pathogenic functions in carrion crows engaged in scavenging behavior, offering a representative case of how the gut microbiota contributes to the protection of hosts with specialized diets.
Assuntos
Corvos , Animais , Camundongos , Enterococcus faecalis , Ecossistema , RNA Ribossômico 16S , Comportamento Alimentar , AvesRESUMO
Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide potential range are still full of controversy. Here, we adopt CoP, Co, and Co3O4 as model materials to solve these issues. CoP evolves into a core@shell structured CoP@Co before NRA. For CoP@Co and Co catalysts, a three-step relay mechanism is carried out over superficial dynamical Coδ+ active species under low overpotential, while a continuous hydrogenation mechanism from nitrate to ammonia is unveiled over superficial Co species under high overpotential. In comparison, Co3O4 species are stable and steadily catalyze nitrate hydrogenation to ammonia across a wide potential range. As a result, CoP@Co and Co exhibit much higher NRA activity than Co3O4 especially under a low overpotential. Moreover, the NRA performance of CoP@Co is higher than Co although they experience the same reaction mechanism. A series of characterizations clarify the reason for performance enhancement highlighting that CoP core donates abundant electrons to superficial active species, leading to the generation of more active hydrogen for the reduction of nitrogen-containing intermediates.
RESUMO
We present a study on the electrocatalysis of 214-type perovskite oxides LnSrCoO4 (Ln = La, Pr, Sm, Eu, and Ga) with semiconducting-like behavior synthesized using the sol-gel method. Among these five catalysts, PrSrCoO4 exhibits the optimal electrochemical performance in both the oxygen evolution reaction and the hydrogen evolution reaction, mainly due to its larger electrical conductivity, mass activity, and turnover frequency. Importantly, the weak dependency of LSV curves in a KOH solution with different pH values, revealing the adsorbate evolving mechanism in PrSrCoO4, and the density functional theory (DFT) calculations indicate that PrSrCoO4 has a smaller Gibbs free energy and a higher density of states near the Fermi level, which accelerates the electrochemical water splitting. The mutual substitution of different rare-earth elements will change the unit-cell parameters, regulate the electronic states of catalytic active site Co ions, and further affect their catalytic performance. Furthermore, the magnetic results indicate strong spin-orbit coupling in the electroactive sites of Co ions in SmSrCoO4 and EuSrCoO4, whereas the magnetic moments of Co ions in the other three catalysts mainly arise from the spin itself. Our experimental results expand the electrochemical applications of 214-type perovskite oxides and provide a good platform for a deeper understanding of their catalytic mechanisms.
RESUMO
Left ventricular hypertrophy (LVH) is a hypertensive heart disease that significantly escalates the risk of clinical cardiovascular events. Its etiology potentially incorporates various clinical attributes such as gender, age, and renal function. From mechanistic perspective, the remodeling process of LVH can trigger increment in certain biomarkers, notably sST2 and NT-proBNP. This multicenter, retrospective study aimed to construct an LVH risk assessment model and identify the risk factors. A total of 417 patients with essential hypertension (EH), including 214 males and 203 females aged 31-80 years, were enrolled in this study; of these, 161 (38.6%) were diagnosed with LVH. Based on variables demonstrating significant disparities between the LVH and Non-LVH groups, three multivariate stepwise logistic regression models were constructed for risk assessment: the "Clinical characteristics" model, the "Biomarkers" model (each based on their respective variables), and the "Clinical characteristics + Biomarkers" model, which amalgamated both sets of variables. The results revealed that the "Clinical characteristics + Biomarkers" model surpassed the baseline models in performance (AUC values of the "Clinical characteristics + Biomarkers" model, the "Biomarkers" model, and the "Clinical characteristics" model were .83, .75, and .74, respectively; P < .0001 for both comparisons). The optimized model suggested that being female (OR: 4.26, P <.001), being overweight (OR: 1.88, p = .02) or obese (OR: 2.36, p = .02), duration of hypertension (OR: 1.04, P = .04), grade III hypertension (OR: 2.12, P < .001), and sST2 (log-transformed, OR: 1.14, P < .001) were risk factors, while eGFR acted as a protective factor (OR: .98, P = .01). These findings suggest that the integration of clinical characteristics and biomarkers can enhance the performance of LVH risk assessment.
Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Feminino , Humanos , Masculino , Biomarcadores , Hipertensão Essencial/complicações , Hipertensão Essencial/epidemiologia , Hipertensão/complicações , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/epidemiologia , Hipertrofia Ventricular Esquerda/etiologia , Nomogramas , Estudos Retrospectivos , Medição de Risco , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou maisRESUMO
Background: The hand skeletal features of children and adolescents at different growth statuses and development periods, and the correlation between these skeletal features and hand asymmetric force are currently unclear. Thus, this study sought to investigate the hand skeletal features of children and adolescents at different growth statuses and at different periods of development, and the correlation between these skeletal features and asymmetric force in hands. Methods: A retrospective study was performed on subjects aged 4-20 years with good growth status (group A) or short stature (group B). Additional subjects aged 4-20, 21-40, and >40 years were enrolled in groups C, D, and E, respectively. All the subjects underwent left-hand posteroanterior X-ray radiography. Brachymesophalangia-V (BMP-V), conical epiphysis, epiphysis/metaphysis symmetry of the proximal phalanx (ESP), and the angle of the metacarpal-phalangeal axis were analyzed. Results: Of the 654 children and teenagers aged 4-20 years (median: 11 years) enrolled in the study, 432 were allocated to group A, of whom 237 (54.9%) were male and 195 (45.1%) were female, and 222 matched cases were allocated to group B, of whom 112 (50.5%) were male and 110 (49.5%) were female. The first to third ESPs were significantly (P<0.05) greater in group A than in group B, while the first to third angles of the metacarpal-phalangeal axis were significantly (P<0.05) smaller in group A than in group B. The correlation analysis revealed a highly significant (P<0.01) negative correlation between the ESP and angle of the metacarpal-phalangeal axis (r=-0.948, -0.926, -0.940, -0.885, and -0.848, respectively). The incidence of BMP-V was 15.4% in all patients, while that of conical epiphysis was 19.5%. The incidence of BMP-V and conical epiphysis was significantly (P<0.05) smaller in group A than in group B (11.1% vs. 23.8% for BMP-V and 16.6% vs. 25.2% for conical epiphysis, respectively). Additionally, 216 subjects were enrolled in group C (108 male and 108 female), 185 subjects were enrolled in in group D (93 male and 92 female), and 176 subjects were enrolled in in group E (104 male and 72 female). The second to fifth ESPs in group C were significantly (P<0.05) smaller than those in both groups D and E, while the second to fifth angles of the metacarpal-phalangeal axis were significantly (P<0.05) larger in group C than in both groups D and E. A BMP-V was present in 35 (16.2%) patients in group C, 8 (4.3%) in group D, and 2 (1.1%) in group E, and the difference among the three groups was statistically significant (P<0.05). Conclusions: The epiphyseal symmetry of the proximal phalanges is poor in short stature children and adolescents, and the angle between the metacarpal and phalangeal axes is larger in children and adolescents with short stature than those with normal height and good growth status. A negative correlation was found between the epiphyseal symmetry of the proximal phalanges and asymmetrical stress.
RESUMO
OBJECTIVE: The aim of this study is to develop a nomogram model for predicting the occurrence of intramyocardial hemorrhage (IMH) in patients with Acute Myocardial Infarction (AMI) following Percutaneous Coronary Intervention (PCI). The model is constructed utilizing clinical data and the SYNTAX Score (SS), and its predictive value is thoroughly evaluated. METHODS: A retrospective study was conducted, including 216 patients with AMI who underwent Cardiac Magnetic Resonance (CMR) within a week post-PCI. Clinical data were collected for all patients, and their SS were calculated based on coronary angiography results. Based on the presence or absence of IMH as indicated by CMR, patients were categorized into two groups: the IMH group (109 patients) and the non-IMH group (107 patients). The patients were randomly divided in a 7:3 ratio into a training set (151 patients) and a validation set (65 patients). A nomogram model was constructed using univariate and multivariate logistic regression analyses. The predictive capability of the model was assessed using Receiver Operating Characteristic (ROC) curve analysis, comparing the predictive value based on the area under the ROC curve (AUC). RESULTS: In the training set, IMH post-PCI was observed in 78 AMI patients on CMR, while 73 did not show IMH. Variables with a significance level of P < 0.05 were screened using univariate logistic regression analysis. Twelve indicators were selected for multivariate logistic regression analysis: heart rate, diastolic blood pressure, ST segment elevation on electrocardiogram, culprit vessel, symptom onset to reperfusion time, C-reactive protein, aspartate aminotransferase, lactate dehydrogenase, creatine kinase, creatine kinase-MB, high-sensitivity troponin T (HS-TnT), and SYNTAX Score. Based on multivariate logistic regression results, two independent predictive factors were identified: HS-TnT (Odds Ratio [OR] = 1.61, 95% Confidence Interval [CI]: 1.21-2.25, P = 0.003) and SS (OR = 2.54, 95% CI: 1.42-4.90, P = 0.003). Consequently, a nomogram model was constructed based on these findings. The AUC of the nomogram model in the training set was 0.893 (95% CI: 0.840-0.946), and in the validation set, it was 0.910 (95% CI: 0.823-0.970). Good consistency and accuracy of the model were demonstrated by calibration and decision curve analysis. CONCLUSION: The nomogram model, constructed utilizing HS-TnT and SS, demonstrates accurate predictive capability for the risk of IMH post-PCI in patients with AMI. This model offers significant guidance and theoretical support for the clinical diagnosis and treatment of these patients.
Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Nomogramas , Estudos Retrospectivos , Infarto do Miocárdio/diagnóstico , Hemorragia/diagnóstico por imagem , Hemorragia/etiologia , Hemorragia/epidemiologiaAssuntos
Neoplasias , Linfócitos T , Humanos , Engenharia Tecidual , Neoplasias/terapia , ImunoterapiaRESUMO
The concept of multi-target-directed ligands offers fresh perspectives for the creation of brand-new Alzheimer's disease medications. To explore their potential as multi-targeted anti-Alzheimer's drugs, eighteen new bakuchiol derivatives were designed, synthesized, and evaluated. The structures of the new compounds were elucidated by IR, NMR, and HRMS. Eighteen compounds were assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in vitro using Ellman's method. It was shown that most of the compounds inhibited AChE and BuChE to varying degrees, but the inhibitory effect on AChE was relatively strong, with fourteen compounds showing inhibition of >50% at the concentration of 200 µM. Among them, compound 3g (IC50 = 32.07 ± 2.00 µM) and compound 3n (IC50 = 34.78 ± 0.34 µM) showed potent AChE inhibitory activities. Molecular docking studies and molecular dynamics simulation showed that compound 3g interacts with key amino acids at the catalytically active site (CAS) and peripheral anionic site (PAS) of acetylcholinesterase and binds stably to acetylcholinesterase. On the other hand, compounds 3n and 3q significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 released from LPS-induced RAW 264.7 macrophages. Compound 3n possessed both anti-acetylcholinesterase activity and anti-inflammatory properties. Therefore, an in-depth study of compound 3n is expected to be a multi-targeted anti-AD drug.