Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1390300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253383

RESUMO

The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.

2.
Eur J Med Chem ; 265: 116065, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160617

RESUMO

Senile plaques induced by ß-amyloid (Aß) abnormal aggregation and neurofibrillary tangles (NFT) caused by tau hyperphosphorylation are important pathological manifestations of Alzheimer's disease (AD). Glycogen synthase kinase-3 (GSK-3) is a conserved kinase; one member GSK-3ß is highly expressed in the AD brain and involved in the formation of NFT. Hence, pharmacologically inhibiting GSK-3ß activity and expression is a good approach to treat AD. As summarized in this article, multiple GSK-3ß inhibitors has been comprehensively summarized over recent five years. However, only lithium carbonate and Tideglusib have been studied in clinical trials of AD. Besides ATP-competitive and non-ATP-competitive inhibitors, peptide inhibitors, allosteric inhibitors and other types of inhibitors have gradually attracted more interest. Moreover, considering the close relationship between GSK-3ß and other targets involved in cholinergic hypothesis, Aß aggregation hypothesis, tau hyperphosphorylation hypothesis, oxidative stress hypothesis, neuro-inflammation hypothesis, etc., diverse multifunctional molecules and multi-target directed ligands (MTDLs) have also been disclosed. We hope that these recent advances and critical perspectives will facilitate the discovery of safe and effective GSK-3ß inhibitors for AD treatment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Emaranhados Neurofibrilares/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA