Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Death Discov ; 10(1): 34, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233385

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated, voltage-dependent channels of the ionotropic glutamate receptor family. The present study explored whether NMDAR activation induced ferroptosis in vascular endothelial cells and its complicated mechanisms in vivo and in vitro. Various detection approaches were used to determine the ferroptosis-related cellular iron content, lipid reactive oxygen species (LOS), siRNA molecules, RNA-sequence, MDA, GSH, and western blotting. The AMPK activator Acadesine (AICAR), HMGB1 inhibitor glycyrrhizin (GLY), PP2A inhibitor LB-100, and NMDAR inhibitor MK801 were used to investigate the involved in vivo and in vitro pathways. The activation of NMDAR with L-glutamic acid (GLU) or NMDA significantly promoted cellular ferroptosis, iron content, MDA, and the PTGS2 expression, while decreasing GPX4 expression and GSH concentration in human umbilical vein endothelial cells (HUVECs), which was reversed by ferroptosis inhibitors Ferrostatin-1(Fer-1), Liproxstatin-1 (Lip-1), or Deferoxamine (DFO). RNA-seq revealed that ferroptosis and SLC7A11 participate in NMDA or GLU-mediated NMDAR activation. The PP2A-AMPK-HMGB1 pathway was majorly associated with NMDAR activation-induced ferroptosis, validated using the PP2A inhibitor LB-100, AMPK activator AICAR, or HMGB1 siRNA. The role of NMDAR in ferroptosis was validated in HUVECs induced with the ferroptosis activator errasin or RSL3 and counteracted by the NMDAR inhibitor MK-801. The in vivo results showed that NMDA- or GLU-induced ferroptosis and LOS production was reversed by MK-801, LB-100, AICAR, MK-801, and GLY, confirming that the PP2A-AMPK-HMGB1 pathway is involved in NMDAR activation-induced vascular endothelium ferroptosis. In conclusion, the present study demonstrated a novel role of NMDAR in endothelial cell injury by regulating ferroptosis via the PP2A-AMPK-HMGB1 pathway.

2.
Cell Death Discov ; 9(1): 59, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774369

RESUMO

Lipopolysaccharide (LPS) displays a robust immunostimulatory ability upon Toll-like receptor 4 (TLR4) recognition. N-methyl-D-aspartate receptors (NMDARs) are highly compartmentalized in most cells and implicated in various inflammatory disorders. However, the relationship between TLR4 and NMDARs has not been explored deeply. This study aimed to examine the role of NMDARs and its specific inhibitor MK801 in LPS-treated endothelial cell dysfunction and the related mechanism in vivo and in vitro. The results showed that pre-treatment with MK801 significantly decreased LPS-induced cell death, cellular Ca2+, cellular reactive oxygen species, and glutamate efflux. Moreover, MK801 restrained LPS-induced mitochondrial dysfunction by regulating mitochondrial membrane potential and mitochondrial Ca2+ uptake. The oxygen consumption, basal and maximal respiration rate, and ATP production in LPS-treated HUVECs were reversed by MK801 via regulating ATP synthesis-related protein SDHB2, MTCO1, and ATP5A. The molecular pathway involved in MK801-regulated LPS injury was mediated by phosphorylation of CaMKII and ERK and the expression of MCU, MCUR1, and TLR4. LPS-decreased permeability in HUVECs was improved by MK801 via the Erk/ZO-1/occluding/Cx43 axis. Co-immunoprecipitation assay and western blotting showed three subtypes of NMDARs, NMDAζ1, NMDAε2, and NMDAε4 were bound explicitly to TLR4, suppressed by LPS, and promoted by MK801. Deficiency of NMDAζ1, NMDAε2, or NMDAε4 induced cell apoptosis, Ca2+ uptake, ROS production, and decreased basal and maximal respiration rate, and ATP production, suggesting that NMDARs integrity is vital for cell and mitochondrial function. In vivo investigation showed MK801 improved impairment of vascular permeability, especially in the lung and mesentery in LPS-injured mice. Our study displayed a novel mechanism and utilization of MK801 in LPS-induced ECs injury and permeability.

3.
Eur J Pharmacol ; 920: 174858, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219729

RESUMO

Cardiac hypertrophy is a major risk factor for developing heart failure. This study investigates the effects of the natural flavone acacetin on myocardial hypertrophy in cellular level and whole animals. In cardiomyocytes from neonatal rat with hypertrophy induced by angiotensin II (Ang II), acacetin at 0.3, 1, and 3 µM reduced the increased myocyte surface area, brain natriuretic peptide (BNP), and ROS production by upregulating anti-oxidative molecules (i.e. Nrf2, SOD1, SOD2, HO-1), anti-apoptotic protein Bcl-2, and downregulating the pro-apoptotic protein Bax and the inflammatory cytokine IL-6 in a concentration-dependent manner. In addition, acacetin rescued Ang II-induced impairment of PGC-1α, PPARα and pAMPK. These beneficial effects of acacetin were mediated by activation of Sirt1, which was confirmed in cardiac hypertrophy induced by abdominal aorta constriction (AAC) in SD rats. Acacetin prodrug (10 mg/kg, s.c., b.i.d.) treatment reduced the elevated artery blood pressure, improved the increased heart size and thickness of left ventricular wall and the ventricular fibrosis associated with inhibiting myocardial fibrosis and BNP, and reversed the impaired protective signal molecules including PGC-1α, Nrf2, PPARα, pAMPK and Sirt1 of left ventricular tissue. Our results demonstrate the novel pharmacological effect that acacetin ameliorates cardiac hypertrophy via Sirt1-mediated activation of AMPK/PGC-1α signal molecules followed by reducing oxidation, inflammation and apoptosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Cardiomegalia , Flavonas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Flavonas/farmacologia , Miócitos Cardíacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Sirtuína 1/metabolismo
4.
Cardiol Res Pract ; 2021: 8838151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552599

RESUMO

OBJECTIVES: To verify the protective effect of phosphocreatine on myocardium in an ischemic model and the possible mechanism of action. METHODS: The model of myocardial ischemia/reperfusion (I/R) was established by the ligation balloon method. 30 SD rats were randomly divided into three groups, n = 10 in each group. Sham operation group: the coronary artery was not blocked and observed for 120 minutes. The ischemia/reperfusion (I/R) group was given ischemia for 30 minutes and ischemia reperfusion for 90 minutes. Phosphocreatine (PCr) group: after 30 minutes of ischemia, the rats were intraperitoneally injected with PCr (200 mg/kg) for 90 minutes. The animal groups of myocardial ischemia/reperfusion model in vitro were the same as those in vivo. The heart was removed by thoracotomy and washed immediately in H-K buffer solution. Then, the heart was installed on the Langendorff instrument. The concentration of PCr perfusion fluid in the PCr group was 10 mmol/L. The changes in coronary blood flow in isolated myocardium were recorded. The heart rate and electrocardiogram were recorded by RM6240BT. At the end of the experiment, myocardial pathological sections and Cx43 immunofluorescence staining were made, and the contents of malondialdehyde (MDA) in myocardial tissue were detected. RESULTS: Phosphocreatinine treatment improved the myocardial ischemia model, performance in electrocardiogram (ECG) changes (ST segment apparent), and histological changes (decrease in necrotic myocardial cells, inflammatory cell infiltration, and a reduction in myocardial edema). At the same time, MDA decreased, while coronary blood flow and Cx43 expression significantly improved. CONCLUSIONS: Phosphocreatine can improve the electrocardiogram and restore histologic changes in ischemic myocardium and coronary blood flow. The postulated mechanism is by inhibiting the generation of free oxygen radicals and restoring the expression of Cx43 protein.

5.
Front Pharmacol ; 11: 607796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519472

RESUMO

The strategy of decreasing atherosclerotic cardiovascular disorder is imperative for reducing premature death and improving quality of life in patients with diabetes mellitus. The aim of this study was to investigate whether the natural flavone acacetin could protect against endothelial injury induced by high glucose and attenuate diabetes-accelerated atherosclerosis in streptozotocin-(STZ) induced diabetic ApoE-/- mice model. It was found that in human umbilical vein endothelial cells (HUVECs) cultured with normal 5.5 mM or high 33 mM glucose, acacetin (0.3-3 µM) exerted strong cytoprotective effects by reversing high glucose-induced viability reduction and reducing apoptosis and excess production of intracellular reactive oxygen species (ROS) and malondialdehyde in a concentration-dependent manner. Acacetin countered high glucose-induced depolarization of mitochondrial membrane potential and reduction of ATP product and mitoBcl-2/mitoBax ratio. Silencing Sirt3 abolished the beneficial effects of acacetin. Further analysis revealed that these effects of acacetin rely on Sirt1 activation by increasing NAD+ followed by increasing Sirt3, pAMPK and PGC-1α. In STZ-diabetic mice, acacetin significantly upregulated the decreased signaling molecules (i.e. SOD, Bcl-2, PGC-1α, pAMPK, Sirt3 and Sirt1) in aorta tissue and attenuated atherosclerosis. These results indicate that vascular endothelial protection of acacetin by activating Sirt1/Sirt3/AMPK signals is likely involved in alleviating diabetes-accelerated atherosclerosis by preserving mitochondrial function, which suggests that acacetin may be a drug candidate for treating cardiovascular disorder in patients with diabetes.

6.
Zhonghua Xin Xue Guan Bing Za Zhi ; 34(8): 739-43, 2006 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-17081403

RESUMO

OBJECTIVE: To investigate the relationship between calcium-sensing receptor protein (CaSR) expression and rat cardiomyocyte apoptosis and related signal transduction pathways. METHODS: The CaSR, BCl2, Caspase3 protein and ERK1/2 phosphorylation or non-phosphorylation were detected by Western blot. Cardiomyocyte apoptosis was detected by flow cytometry and immunofluorescence. RESULTS: CaSR protein was detected in rat cardiac tissue and CaSR activator gadolinium (GdCl3) induced cardiomyocyte apoptosis and increased ERK1/2 phosphorylation and expression of BCl2 and activated Caspase3. The selective mitogen-activated protein kinase (MAPK) inhibitor PD98059 abolished gadolinium -induced ERK1/2 activation and BCl2 expression, further increased the activation of Caspase3 and cardiomyocyte apoptosis. CONCLUSION: Our results demonstrate the CaSR existence in cardiomyocytes and CaSR activation by gadolinium can induce myocyte apoptosis by activating Caspase3 and tyrosine protein kinase pathway.


Assuntos
Apoptose , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Detecção de Cálcio/biossíntese , Animais , Caspase 3/metabolismo , Feminino , Masculino , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA