Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985640

RESUMO

The electron transport layer (ETL) with excellent charge extraction and transport ability is one of the key components of high-performance perovskite solar cells (PSCs). SnO2 has been considered as a more promising ETL for the future commercialization of PSCs due to its excellent photoelectric properties and easy processing. Herein, we propose a facile and effective ETL modification strategy based on the incorporation of methylenediammonium dichloride (MDACl2) into the SnO2 precursor colloidal solution. The effects of MDACl2 incorporation on charge transport, defect passivation, perovskite crystallization, and PSC performance are systematically investigated. First, the surface defects of the SnO2 film are effectively passivated, resulting in the increased conductivity of the SnO2 film, which is conducive to electron extraction and transport. Second, the MDACl2 modification contributes to the formation of high-quality perovskite films with improved crystallinity and reduced defect density. Furthermore, a more suitable energy level alignment is achieved at the ETL/perovskite interface, which facilitates the charge transport due to the lower energy barrier. Consequently, the MDACl2-modified PSCs exhibit a champion efficiency of 22.30% compared with 19.62% of the control device, and the device stability is also significantly improved.

2.
Polymers (Basel) ; 14(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35631941

RESUMO

In this work, we apply the sequential processing (SqP) method to address the relatively low electron mobility in recent all-polymer solar cells (all-PSCs) based on the polymerized small-molecule acceptor (PSMA). Compared to the blend-casting (BC) method, all-PSCs composed of PM6/PY-IT via the SqP method show boosted electron mobility and a more balanced charge carrier transport, which increases the FF of the SqP device and compensates for the short-circuit current loss, rendering comparable overall performance with the BC device. Through film-depth-dependent light absorption spectroscopy, we analyze the sub-layer absorption and exciton generation rate in the vertical direction of the device, and discuss the effect of the increased electron mobility on device performance, accordingly.

3.
RSC Adv ; 11(49): 30635-30645, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35479866

RESUMO

A highly selective, sensitive, rapid, low-cost, simple and visual colorimetric system for Al3+ ion detection was developed based on gold nanoparticles (AuNPs) modified with 1,2,3-triazole-4,5-dicarboxylic acid (TADA). The modified gold nanoparticles (TADA-AuNPs) were first prepared by sodium citrate (Na3Ct) reduction of chloroauric acid (HAuCl4) and then capped with a TADA ligand. Five TADA-AuNPs sensors were constructed with sodium citrate (Na3Ct)/chloroauric acid (HAuCl4) under different molar ratios. Results showed that the molar ratio of Na3Ct/HAuCl4, TADA-AuNPs concentration, pH range and detection time had obvious influences on the performance of this colorimetric method. The optimal detection conditions for Al3+ ions were as follows: Na3Ct/HAuCl4 molar ratio of 6.4 : 1, 0.1 mM of TADA-AuNPs concentration, 4-10 pH range and 90 s of detection time. Under the optimal conditions and using diphenyl carbazone (DPC) as a Cr3+ masking agent, this colorimetric sensor exhibited outstanding time efficiency, selectivity and sensitivity for Al3+ detection. In particular, the detection limits of this sensor obtained via UV-vis and the naked eye were 15 nM and 1.5 µM, respectively, which were much lower than the current limit (3.7 µM) for drinking water in WHO regulation and better than the previous reports. Moreover, this colorimetric sensing system could be used to for on-site, trace level and real-time rapid detection of Al3+ in real water samples.

4.
ACS Cent Sci ; 6(11): 1901-1915, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274269

RESUMO

The development of portable, wearable, and miniaturized integrated electronics has significantly promoted the immense desire for planar micro-supercapacitors (MSCs) among the extremely competitive energy storage devices. However, their energy density is still insufficient owing to the low electrochemical performance of conventional electrode materials. Compared with their bulk counterparts, the large specific surface area and fast ion transport with efficient intercalation of two-dimensional (2D) transition metal compounds have spurred the research platforms for their exploitation in the creation of high-performance MSCs. This Outlook presents a systematic summary of cutting-edge research on atomically thin, layered structures of transition metal dichalcogenides, MXenes, and transition metal oxides/hydroxides. Special emphasis is given to the rapid and durable storage of ions, benefiting from the low ion diffusion barriers of host interlayer spaces. Moreover, various strategies have been described to circumvent the structural damage due to the volume change and simultaneously evincing remarkable electronic properties.

5.
Micromachines (Basel) ; 10(5)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067729

RESUMO

In this research, the enhancement in electrochemical performance of pyrolyzed carbon microelectrodes by surface modification is investigated. For the proposed microfabrication process, pyrolyzed carbon microelectrodes with multi-walled carbon nanotubes (MWCNTs) on their surface are obtained by developing GM-1060 photoresist in mixture of propylene glycol methyl ether acetate (PGMEA) and CNTs, and following pyrolysis of a micropatterned photoresist. Polyvinyl alcohol (PVA)/H2SO4 electrolyte (1 M) was applied to assemble this carbon/CNT microelectrode-based all-solid-state microsupercapacitor (carbon/CNT-MSC). The carbon/CNT-MSC shows a higher electrochemical performance compared with that of pyrolyzed carbon microelectrode-based MSC (carbon-MSC). The specific areal and volumetric capacitances of carbon/CNT-MSC (4.80 mF/cm2 and 32.0 F/cm3) are higher than those of carbon-MSC (3.52 mF/cm2 and 23.4 F/cm3) at the scan rate of 10 mV/s. In addition, higher energy density and power density of carbon/CNT-MSC (2.85 mWh/cm3 and 1.98 W/cm3) than those of carbon-MSC (2.08 mWh/cm3 and 1.41 W/cm3) were also achieved. This facile surface modification and optimization are potentially promising, being highly compatible with modern microfabrication technologies and allowing integration of highly electrically conductive CNTs into pyrolyzed carbon to assemble MSCs with improved electrochemical performance. Moreover, this method can be potentially applied to other high-performance micro/nanostructures and microdevices/systems.

6.
Langmuir ; 33(38): 10077-10083, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28857564

RESUMO

Surface morphology is a key factor that might significantly influence the properties of biomaterials. In this study, periodic surface-ring structures have been constructed for calcium phosphate thin films via biomineralization-inspired crystallization process. The patterned octacalcium phosphate crystals have been obtained on poly(2-hydroxyethyl methacrylate) (PHEMA) matrix in the presence of poly(acrylic acid) (PAA). The patterned surface morphologies of the crystal thin films could be tuned by the amount of PAA additives. In addition, the rapid and topotactic transformation to hydroxyapatite (HAP) thin films with surface-ring structures has also been achieved. This study may provide new strategy toward the design of functional calcium phosphate-based thin-film hybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA