Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18546, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122887

RESUMO

Spontaneous intracerebral hemorrhage (ICH) is a very serious kind of stroke. If the outcome of patients can be accurately assessed at the early stage of disease occurrence, it will be of great significance to the patients and clinical treatment. The present study was conducted to investigate whether non-contrast computer tomography (NCCT) models of hematoma and perihematomal tissues could improve the accuracy of short-term prognosis prediction in ICH patients with conservative treatment. In this retrospective analysis, a total of 166 ICH patients with conservative treatment during hospitalization were included. Patients were randomized into a training group (N = 132) and a validation group (N = 34) in a ratio of 8:2, and the functional outcome at 90 days after clinical treatment was assessed by the modified Rankin Scale (mRS). Radiomic features of hematoma and perihematomal tissues of 5 mm, 10 mm, 15 mm were extracted from NCCT images. Clinical factors were analyzed by univariate and multivariate logistic regression to identify independent predictive factors. In the validation group, the mean area under the ROC curve (AUC) of the hematoma was 0.830, the AUC of the perihematomal tissue within 5 mm, 10 mm, 15 mm was 0.792, 0.826, 0.774, respectively, and the AUC of the combined model of hematoma and perihematomal tissue within 10 mm was 0.795. The clinical-radiomics nomogram consisting of five independent predictors and radiomics score (Rad-score) of the hematoma model were used to assess 90-day functional outcome in ICH patients with conservative treatment. Our findings found that the hematoma model had better discriminative efficacy in evaluating the early prognosis of conservatively managed ICH patients. The visual clinical-radiomics nomogram provided a more intuitive individualized risk assessment for 90-day functional outcome in ICH patients with conservative treatment. The hematoma could remain the primary therapeutic target for conservatively managed ICH patients, emphasizing the need for future clinical focus on the biological significance of the hematoma itself.


Assuntos
Hemorragia Cerebral , Hematoma , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/terapia , Hematoma/diagnóstico por imagem , Hematoma/terapia , Tomografia Computadorizada por Raios X/métodos , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Prognóstico , Tratamento Conservador/métodos , Resultado do Tratamento , Curva ROC , Radiômica
2.
PeerJ ; 12: e17559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854798

RESUMO

Background: To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods: The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results: ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion: ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.


Assuntos
Apoptose , Trióxido de Arsênio , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais , Canais de Cátion TRPM , Humanos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Trióxido de Arsênio/farmacologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Células HCT116 , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Óxidos/farmacologia , Antineoplásicos/farmacologia , Invasividade Neoplásica , Arsenicais/farmacologia
3.
Front Immunol ; 15: 1398222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650926

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2023.1188253.].

4.
Reprod Sci ; 31(8): 2261-2272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38630174

RESUMO

Tannic acid (TA) is a polyphenol with antioxidant properties present in various plants. In this study, we explored the protective effect of TA against ovarian oxidative stress in Brandt's voles and its underlying mechanism. At various doses, 3-nitropropionic acid (3-NPA) was intraperitoneally injected into Brandt's voles to simulate ovarian oxidative stress. Thereafter, various doses of TA were intragastrically administered to examine the protective effect of TA against 3-NPA-induced ovarian damage. Changes in inflammation, autophagy, apoptosis, and oxidative stress-related factors were investigated through various biochemical and histological techniques. Ovarian oxidative stress was successfully induced by the intraperitoneal administration of 12.5 mg/kg 3-NPA for 18 days. As a result, the ovarian coefficient decreased and ovarian tissue fibrosis was induced. TA treatment effectively alleviated the increase in luteinizing hormone and follicle-stimulating hormone levels; the decrease in estradiol, progesterone, and anti-Müllerian hormone levels; and the decline in fertility induced by 3-NPA. Compared to that in the 3-NPA group, TA decreased the expression of autophagy-related proteins beclin-1 and LC3, as well as the level of apoptosis. It also activated the AKT/mTOR signaling pathway, downregulated PTEN and p-NF-κB expression, and upregulated Nrf2 expression. In conclusion, our findings indicate that TA could inhibit autophagy via the regulation of AKT/mTOR signaling, suppressing oxidative damage and inflammatory responses through Nrf2 to alleviate 3-NPA-induced ovarian damage. Collectively, the current findings highlight the protective effects of TA in Brandt's vole, where it promotes the maintenance of normal ovarian function.


Assuntos
Arvicolinae , Nitrocompostos , Ovário , Estresse Oxidativo , Propionatos , Taninos , Animais , Feminino , Nitrocompostos/toxicidade , Propionatos/toxicidade , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Estresse Oxidativo/efeitos dos fármacos , Taninos/farmacologia , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Polifenóis
5.
Gene ; 893: 147944, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38381510

RESUMO

Tannic acid (TA), a significant plant secondary metabolite, is contained in the daily food of Brandt's voles. Its adverse effect on gut function has been shown in earlier research, but the underlying molecular mechanisms remain uncertain. In this study, male Brandt's vole (13 weeks old) were divided into two groups and given 0 (control) or 1,200 (TA-treated) mg•kg-1 TA for 18 days. Then RNA sequencing was used to conduct a thorough transcriptome analysis on the duodenum, jejunum, and ileum of Brandt's voles. Results showed that TA significantly increased serum total cholesterol concentration (P < 0.05) and decreased the nutrient digestibility (P < 0.05) of Brandt's voles. Furthermore, there were 174 differentially expressed genes (DEGs) in the duodenum, 96 DEGs in the jejunum, and 88 DEGs in the ileum between the control and TA-treated groups. Enrichment analysis revealed that many genes associated with bile secretion, fat digestion and absorption, innate immune response, and tight junction such as ABCG2, ABCG8, PEAK1, and IFR2, etc. were altered after TA treatment, which were verified by quantitative real-time PCR. These findings suggested that TA can change the expression of intestinal genes, thereby, altering nutrition metabolism and immunological function, eventually hindering the growth of Brandt's voles. The results of this study provide a theoretical basis for explaining how TA affects the gut function of Brandt's voles at the molecular level.


Assuntos
Arvicolinae , Perfilação da Expressão Gênica , Polifenóis , Animais , RNA-Seq , Análise de Sequência de RNA , Arvicolinae/genética
6.
Front Pharmacol ; 14: 1340247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269270

RESUMO

Background: Vascular endothelial injury is a contributing factor to the development of atherosclerosis and the resulting cardiovascular diseases. One particular factor involved in endothelial cell apoptosis and atherosclerosis is palmitic acid (PA), which is a long-chain saturated fatty acid. In addition, transient receptor potential melastatin 4 (TRPM4), a non-selective cation channel, plays a significant role in endothelial dysfunction caused by various factors related to cardiovascular diseases. Despite this, the specific role and mechanisms of TRPM4 in atherosclerosis have not been fully understood. Methods: The protein and mRNA expressions of TRPM4, apoptosis - and inflammation-related factors were measured after PA treatment. The effect of TRPM4 knockout on the protein and mRNA expression of apoptosis and inflammation-related factors was detected. The changes of intracellular Ca2+, mitochondrial membrane potential, and reactive oxygen species were detected by Fluo-4 AM, JC-1, and DCFH-DA probes, respectively. To confirm the binding of miR-133a-3p to TRPM4, a dual luciferase reporter gene assay was conducted. Finally, the effects of miR-133a-3p and TRPM4 on intracellular Ca2+, mitochondrial membrane potential, and reactive oxygen species were examined. Results: Following PA treatment, the expression of TRPM4 increases, leading to calcium overload in endothelial cells. This calcium influx causes the assemblage of Bcl-2, resulting in the opening of mitochondrial calcium channels and mitochondrial damage, ultimately triggering apoptosis. Throughout this process, the mRNA and protein levels of IL-1ß, ICAM-1, and VCAM1 significantly increase. Database screenings and luciferase assays have shown that miR-133a-3p preferentially binds to the 3'UTR region of TRPM4 mRNA, suppressing TRPM4 expression. During PA-induced endothelial injury, miR-133a-3p is significantly decreased, but overexpression of miR-133a-3p can attenuate the progression of endothelial injury. On the other hand, overexpression of TRPM4 counteracts the aforementioned changes. Conclusion: TRPM4 participates in vascular endothelial injury caused by PA. Therefore, targeting TRPM4 or miR-133a-3p may offer a novel pharmacological approach to preventing endothelial injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA