Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Math Biosci Eng ; 21(2): 3037-3062, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38454718

RESUMO

The fatigue property of the recycled mixture affects the structural design of recycled pavement. In order to explore the effect of different reclaimed asphalt pavement (RAP) content on the fatigue properties of recycled mixtures, the fatigue properties of recycled mixtures were analyzed through an indoor fatigue test and finite element numerical simulation. Based on the phenomenological method and the dissipated energy theory, the fatigue properties of recycled mixtures with different RAP contents were analyzed and the fatigue damage of the mixtures were also studies under various strain levels. Based on the finite element numerical model of fatigue damage, the stress distribution and internal damage field distribution of trabecular specimens under different temperatures, strain levels and RAP contents were analyzed. The results showed that the anti-fatigue level of the mixture decreased as the RAP content was increased. The relative change rate of dissipated energy for different types of mixtures showed a two-stage change rule with the change of load times, that is, the value is large and decreasing, and the value is small and stable. The correlation between the plateau value (PV) and the fatigue life was established under the double logarithm coordinates, which could better analyze the influence law of the RAP content on the fatigue performance of the recycled mixture. Under different temperatures, strain levels, and RAP contents, the stress at the bottom of trabecular specimen and the overall damage field were mainly generated at the upper part under compressive stress and the bottom under tensile stress, and the damage field distribution area accounted for a small part of the whole specimen. According to the test results and fatigue damage distribution, it is recommended that the content of recycled aggregate in recycled asphalt mixtures be less than 30% to ensure good performance. The research results have important practical significance for the improvement of fatigue performance and engineering application of recycled mixtures.

2.
Materials (Basel) ; 15(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36363459

RESUMO

With the promotion of cold recycled mixture (CRM) in cold areas and the improvement of its application layer, the enhancement of the low-temperature performance of mixtures is particularly important. The applicability of the current low-temperature bending test method to CRM is controversial. Firstly, the low-temperature crack resistance of CRM with different gradations and emulsified asphalt contents was studied by the indirect tensile (IDT) test and the semi-circular bending (SCB) test. Thereafter, the low-temperature performance evaluation index suitable for CRM was put forward. Then, the low-temperature performance of CRM with different gradations, fiber types, and contents was evaluated by using the above low-temperature evaluation index. The results show that the low-temperature performance of CRM with different gradations and emulsified asphalt contents can be distinguished by fracture work (W) and fracture energy (Gf). Not only do the test results have little variability (about 12% and 15%, respectively), but also the correlation coefficient with the new asphalt film thickness is the highest (0.8595 and 0.8939, respectively). Compared with coarse gradation (AC-25) and fine gradation (AC-13), medium-gradation (AC-20) CRM has higher low-temperature performance, and polyester fiber can significantly improve the low-temperature performance of CRM. Compared with non-fiber, the W and Gf of CRM of polyester fiber (0.3% content) can be increased by at least 42% and 30%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA