Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rep ; 9(18): e15046, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34558206

RESUMO

Diabetic skeletal muscles show reduced contractile force and increased fatigability. Hands are a target for several diabetes-induced complications. Therefore, reduced handgrip strength often occurs as a consequence of diabetes. The aim of this study was to examine whether long-term exercise can prevent reduction of grip strength in type 2 diabetes mellitus (T2DM) model OLETF rats, and to explore the mechanisms underlying diabetes-induced grip strength reduction. Ten 5-week-old OLETF rats were used as experimental animals, and five non-diabetic LETO rats as controls of OLETF rats. Half OLETF rats performed daily voluntary wheel-running for 17 months (OLETF + EXE), and the rest of OLETF and LETO rats were sedentary. Grip strength was higher in OLETF + EXE and LETO groups than in OLETF group. OLETF group with hyperglycemia showed an increase in HbA1c, serum TNF-α, and muscle SERCA activity, but a decrease in circulating insulin. Each fiber area, total fiber area, and % total fiber area in type IIb fibers of extensor digitorum longus muscles were larger in OLETF + EXE and LETO groups than in OLETF group. There was a positive correlation between grip strength and the above three parameters concerning type IIb fiber area. Therefore, type IIb fiber atrophy may be the major direct cause of grip strength reduction in OLETF group, although there seems multiple etiological mechanisms. Long-term wheel-running may have blocked the diabetes-induced reduction of grip strength by preventing type IIb fiber atrophy. Regular exercise may be a potent modality for preventing not only the progression of diabetes but muscle dysfunction in T2DM patients.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Força da Mão , Atrofia Muscular/prevenção & controle , Condicionamento Físico Animal/métodos , Corrida , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Masculino , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Ratos , Ratos Long-Evans
2.
Osteoporos Sarcopenia ; 2(1): 25-29, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30775464

RESUMO

OBJECTIVES: Type 2 diabetes mellitus (T2DM) increases fracture risk despite normal to high levels of bone mineral density. Bone quality is known to affect bone fragility in T2DM. The aim of this study was to clarify the trabecular bone microstructure and cortical bone geometry of the femur in T2DM model rats. METHODS: Five-week-old Otsuka Long-Evans Tokushima Fatty (OLETF; n = 5) and Long-Evans Tokushima Otsuka (LETO; n = 5) rats were used. At the age of 18 months, femurs were scanned with micro-computed tomography, and trabecular bone microstructure and cortical bone geometry were analyzed. RESULTS: Trabecular bone microstructure and cortical bone geometry deteriorated in the femur in OLETF rats. Compared with in LETO rats, in OLETF rats, bone volume fraction, trabecular number and connectivity density decreased, and trabecular space significantly increased. Moreover, in OLETF rats, cortical bone volume and section area decreased, and medullary volume significantly increased. CONCLUSIONS: Long-term T2DM leaded to deterioration in trabecular and cortical bone structure. Therefore, OLETF rats may serve as a useful animal model for investigating the relationship between T2DM and bone quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA