Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 573(7774): 430-433, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511695

RESUMO

Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.


Assuntos
Linfócitos T CD8-Positivos , Fibrose Endomiocárdica/terapia , Imunoterapia Adotiva , Animais , Antígenos de Superfície/imunologia , Linfócitos T CD8-Positivos/imunologia , Fibrose Endomiocárdica/imunologia , Fibroblastos/imunologia , Humanos , Masculino , Camundongos , Ovalbumina/imunologia , Cicatrização
3.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111569

RESUMO

Influenza virus outbreaks remain a serious threat to public health. A greater understanding of how cells targeted by the virus respond to the infection can provide insight into the pathogenesis of disease. Here we examined the transcriptional profile of in vivo-infected and uninfected type 2 alveolar epithelial cells (AEC) in the lungs of influenza virus-infected mice. We show for the first time the unique gene expression profiles induced by the in vivo infection of AEC as well as the transcriptional response of uninfected bystander cells. This work allows us to distinguish the direct and indirect effects of infection at the cellular level. Transcriptome analysis revealed that although directly infected and bystander AEC from infected animals shared many transcriptome changes compared to AEC from uninfected animals, directly infected cells produce more interferon and express lower levels of Wnt signaling-associated transcripts, while concurrently expressing more transcripts associated with cell death pathways, than bystander uninfected AEC. The Wnt signaling pathway was downregulated in both in vivo-infected AEC and in vitro-infected human lung epithelial A549 cells. Wnt signaling did not affect type I and III interferon production by infected A549 cells. Our results reveal unique transcriptional changes that occur within infected AEC and show that influenza virus downregulates Wnt signaling. In light of recent findings that Wnt signaling is essential for lung epithelial stem cells, our findings reveal a mechanism by which influenza virus may affect host lung repair.IMPORTANCE Influenza virus infection remains a major public health problem. Utilizing a recombinant green fluorescent protein-expressing influenza virus, we compared the in vivo transcriptomes of directly infected and uninfected bystander cells from infected mouse lungs and discovered many pathways uniquely regulated in each population. The Wnt signaling pathway was downregulated in directly infected cells and was shown to affect virus but not interferon production. Our study is the first to discern the in vivo transcriptome changes induced by direct viral infection compared to mere exposure to the lung inflammatory milieu and highlight the downregulation of Wnt signaling. This downregulation has important implications for understanding influenza virus pathogenesis, as Wnt signaling is critical for lung epithelial stem cells and lung epithelial cell differentiation. Our findings reveal a mechanism by which influenza virus may affect host lung repair and suggest interventions that prevent damage or accelerate recovery of the lung.


Assuntos
Células Epiteliais Alveolares/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Mucosa Respiratória/imunologia , Via de Sinalização Wnt/imunologia , Células A549 , Células Epiteliais Alveolares/virologia , Animais , Linhagem Celular , Cães , Feminino , Perfilação da Expressão Gênica , Humanos , Interferon Tipo I/imunologia , Interferons/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Transcriptoma/genética , Via de Sinalização Wnt/genética , Interferon lambda
4.
Antimicrob Agents Chemother ; 58(12): 7056-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224013

RESUMO

In the absence of universally available antiretroviral (ARV) drugs or a vaccine against HIV-1, microbicides may offer the most immediate hope for controlling the AIDS pandemic. The most advanced and clinically effective microbicides are based on ARV agents that interfere with the earliest stages of HIV-1 replication. Our objective was to identify and characterize novel ARV-like inhibitors, as well as demonstrate their efficacy at blocking HIV-1 transmission. Abasic phosphorothioate 2' deoxyribose backbone (PDB) oligomers were evaluated in a variety of mechanistic assays and for their ability to inhibit HIV-1 infection and virus transmission through primary human cervical mucosa. Cellular and biochemical assays were used to elucidate the antiviral mechanisms of action of PDB oligomers against both lab-adapted and primary CCR5- and CXCR4-utilizing HIV-1 strains, including a multidrug-resistant isolate. A polarized cervical organ culture was used to test the ability of PDB compounds to block HIV-1 transmission to primary immune cell populations across ectocervical tissue. The antiviral activity and mechanisms of action of PDB-based compounds were dependent on oligomer size, with smaller molecules preventing reverse transcription and larger oligomers blocking viral entry. Importantly, irrespective of molecular size, PDBs potently inhibited virus infection and transmission within genital tissue samples. Furthermore, the PDB inhibitors exhibited excellent toxicity and stability profiles and were found to be safe for vaginal application in vivo. These results, coupled with the previously reported intrinsic anti-inflammatory properties of PDBs, support further investigations in the development of PDB-based topical microbicides for preventing the global spread of HIV-1.


Assuntos
Colo do Útero/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Oligonucleotídeos Fosforotioatos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Transcrição Reversa/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Colo do Útero/virologia , Desoxirribose/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Expressão Gênica , HIV-1/enzimologia , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/efeitos dos fármacos , Mucosa/virologia , Técnicas de Cultura de Órgãos , Oligonucleotídeos Fosforotioatos/síntese química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/antagonistas & inibidores , Inibidores da Transcriptase Reversa/síntese química , Motilidade dos Espermatozoides/efeitos dos fármacos , Relação Estrutura-Atividade , Vagina/efeitos dos fármacos , Vagina/virologia
5.
Mol Endocrinol ; 24(8): 1605-14, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20592160

RESUMO

The major role of glucagon is to promote hepatic gluconeogenesis and glycogenolysis to raise blood glucose levels during hypoglycemic conditions. Several animal models have been established to examine the in vivo function of glucagon in the liver through attenuation of glucagon via glucagon receptor knockout animals and pharmacological interventions. To investigate the consequences of glucagon loss to hepatic glucose production and glucose homeostasis, we derived mice with a pancreas specific ablation of the alpha-cell transcription factor, Arx, resulting in a complete loss of the glucagon-producing pancreatic alpha-cell. Using this model, we found that glucagon is not required for the general health of mice but is essential for total hepatic glucose production. Our data clarifies the importance of glucagon during the regulation of fasting and postprandial glucose homeostasis.


Assuntos
Glicemia/metabolismo , Células Secretoras de Glucagon/citologia , Glucagon/fisiologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Western Blotting , Glucagon/deficiência , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Mutantes , Células Secretoras de Polipeptídeo Pancreático/citologia , Reação em Cadeia da Polimerase , Células Secretoras de Somatostatina/citologia , Fatores de Transcrição/genética
6.
Clin Lymphoma Myeloma ; 7(8): 524-34, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18021470

RESUMO

Advanced cutaneous T-cell lymphoma (CTCL) is typically associated with a variety of profound defects of cellular immunity, including depressed dendritic cell numbers and function. Therefore, we investigated the ability of synthetic imidazoquinolines, which are agonists for Toll-like receptors (TLRs) 7 and 8, to enhance in vitro the cell-mediated immunity of patients with leukemic CTCL and Sézary syndrome. Patients' peripheral blood mononuclear cells (PBMCs) stimulated with the TLR7 agonist 3M-001 produced high levels of interferon (IFN)-alpha, and the TLR8 agonist 3M-002 potently induced predominantly interleukin (IL)-12 and IFN-gamma. Marked upregulation of CD69 and CD25 on natural killer (NK) cells and T cells from patients and an increase in NK cytolytic activity was also observed. We further demonstrate that priming of patients' PBMCs with IFN-gamma has the ability to synergistically enhance the production of IL-12 induced by a synthetic agonist for TLR8. The underlying mechanisms of increased IL-12 production in response to priming with IFN appears to involve an increase in IL-12 p35 and IL-12 p40 gene transcription and a decrease in IL-10 levels upon stimulation with the TLR8 agonist. Our data demonstrate the ability of imidazoquinolines to potently stimulate cellular immune responses of patients with CTCL and emphasizes the benefit of using a combination of biologic modifiers to further enhance their immune responses.


Assuntos
Imidazóis/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Linfoma Cutâneo de Células T/imunologia , Quinolinas/farmacologia , Síndrome de Sézary/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/efeitos dos fármacos , Humanos , Imunidade Celular/efeitos dos fármacos , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas
7.
J Immunol ; 175(10): 6311-8, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16272282

RESUMO

Chemokine receptor blockade can diminish the recruitment of host effector cells and prolong allograft survival, but little is known of the role of chemokine receptors in promoting host sensitization. We engrafted fully allogeneic islets into streptozotocin-treated normal mice or mice with the autosomal recessive paucity of lymph node T cell (plt) mutation; the latter lack secondary lymphoid expression of the CCR7 ligands, secondary lymphoid organ chemokine (CCL21) and EBV-induced molecule-1 ligand chemokine (CCL19). plt mice showed permanent survival of islets engrafted under the kidney capsule, whereas controls rejected islet allografts in 12 days (p < 0.001), and consistent with this, plt mice had normal allogeneic T cell responses, but deficient migration of donor dendritic cell to draining lymph nodes. Peritransplant i.v. injection of donor splenocytes caused plt recipients to reject their allografts by 12 days, and sensitization at 60 days posttransplant of plt mice with well-functioning allografts restored acute rejection. Finally, islet allografts transplanted intrahepatically in plt mice were rejected approximately 12 days posttransplant, like controls, as were primarily revascularized cardiac allografts. These data show that the chemokine-directed homing of donor dendritic cell to secondary lymphoid tissues is essential for host sensitization and allograft rejection. Interruption of such homing can prevent T cell priming and islet allograft rejection despite normal T and B cell functions of the recipient, with potential clinical implications.


Assuntos
Transplante das Ilhotas Pancreáticas/imunologia , Receptores de Quimiocinas/metabolismo , Animais , Linfócitos B/imunologia , Quimiocina CCL19 , Quimiocina CCL21 , Quimiocinas CC/metabolismo , Células Dendríticas/imunologia , Rejeição de Enxerto , Sobrevivência de Enxerto , Transplante de Coração/imunologia , Linfonodos/imunologia , Ativação Linfocitária , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Mutantes , Receptores CCR7 , Linfócitos T/imunologia , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA