Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CRISPR J ; 4(2): 223-232, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876948

RESUMO

Guided by the extensive knowledge of CRISPR-Cas9 molecular mechanisms, protein engineering can be an effective method in improving CRISPR-Cas9 toward desired traits different from those of their natural forms. Here, we describe a directed protein evolution method that enables selection of catalytically enhanced CRISPR-Cas9 variants (CECas9) by targeting a shortened protospacer within a toxic gene. We demonstrate the effectiveness of this method with a previously characterized Type II-C Cas9 from Acidothermus cellulolyticus (AceCas9) and show by enzyme kinetics an up to fourfold improvement of the in vitro catalytic efficiency by AceCECas9. We further evolved the more widely used Streptococcus pyogenes Cas9 (SpyCas9) and demonstrated a noticeable improvement in the SpyCECas9-facilitated homology directed repair-based gene insertion in human colon cancer cells.


Assuntos
Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Engenharia de Proteínas , Actinobacteria/enzimologia , Actinobacteria/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias do Colo , Edição de Genes/métodos , Células HCT116 , Humanos , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
2.
Nat Commun ; 11(1): 6346, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311465

RESUMO

Acidothermus cellulolyticus CRISPR-Cas9 (AceCas9) is a thermophilic Type II-C enzyme that has potential genome editing applications in extreme environments. It cleaves DNA with a 5'-NNNCC-3' Protospacer Adjacent Motif (PAM) and is sensitive to its methylation status. To understand the molecular basis for the high specificity of AceCas9 for its PAM, we determined two crystal structures of AceCas9 lacking its HNH domain (AceCas9-ΔHNH) bound with a single guide RNA and DNA substrates, one with the correct and the other with an incorrect PAM. Three residues, Glu1044, Arg1088, Arg1091, form an intricate hydrogen bond network with the first cytosine and the two opposing guanine nucleotides to confer specificity. Methylation of the first but not the second cytosine base abolishes AceCas9 activity, consistent with the observed PAM recognition pattern. The high sensitivity of AceCas9 to the modified cytosine makes it a potential device for detecting epigenomic changes in genomes.


Assuntos
Actinobacteria/enzimologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes/métodos , Actinobacteria/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cristalografia por Raios X , Citosina , DNA/química , DNA/genética , DNA/metabolismo , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Metilação , Modelos Moleculares , Conformação Proteica , RNA Guia de Cinetoplastídeos/química
3.
Methods Enzymol ; 616: 265-288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691646

RESUMO

Though making up nearly half of the known CRISPR-Cas9 family of enzymes, the Type II-C CRISPR-Cas9 has been underexplored for their molecular mechanisms and potential in safe gene editing applications. In comparison with the more popular Type II-A CRISPR-Cas9, the Type II-C enzymes are generally smaller in size and utilize longer base pairing in identification of their DNA substrates. These characteristics suggest easier portability and potentially less off-targets for Type II-C in gene editing applications. We describe identification and biochemical characterization of a thermophilic Type II-C CRISPR-Cas from Acidothermus cellulolyticus (AceCas9). We describe several library-based methods that enabled us to identify the PAM sequence and elements critical to protospacer mismatch surveillance of AceCas9.


Assuntos
Actinobacteria/genética , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/genética , Evolução Molecular Direcionada/métodos , Actinobacteria/química , Proteínas de Bactérias/química , Proteína 9 Associada à CRISPR/química , Biblioteca Gênica , Modelos Moleculares
4.
ACS Synth Biol ; 7(12): 2908-2917, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30458109

RESUMO

Despite being utilized widely in genome sciences, CRISPR-Cas9 remains limited in achieving high fidelity in cleaving DNA. A better understanding of the molecular basis of Cas9 holds the key to improve Cas9-based tools. We employed direct evolution and in vitro characterizations to explore structural parameters that impact the specificity of the thermophilic Cas9 from Acidothermus cellulolyticus (AceCas9). By identifying variants that are able to cleave mismatched protospacers within the seed region, we found a critical role of the phosphate lock residues in substrate specificity in a manner that depends on their sizes and charges. Removal of the negative charge from the phosphate lock residues significantly decreases sensitivity to the guide-DNA mismatches. An increase in size of the substituted residues further reduces the sensitivity to mismatches at the first position of the protospacer. Our findings identify the phosphate lock residues as an important site for tuning the specificity and catalytic efficiency of Cas9.


Assuntos
Actinomycetales/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes/métodos , Fosfatos/química , Pareamento Incorreto de Bases , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Evolução Molecular Direcionada , Mutagênese , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/isolamento & purificação , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
5.
ACS Synth Biol ; 6(6): 1103-1113, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28277645

RESUMO

Cas9 is an RNA-guided DNA cleavage enzyme being actively developed for genome editing and gene regulation. To be cleaved by Cas9, a double stranded DNA, or the protospacer, must be complementary to the guide region, typically 20-nucleotides in length, of the Cas9-bound guide RNA, and adjacent to a short Cas9-specific element called Protospacer Adjacent Motif (PAM). Understanding the correct juxtaposition of the protospacer- and PAM-interaction with Cas9 will enable development of versatile and safe Cas9-based technology. We report identification and biochemical characterization of Cas9 from Acidothermus cellulolyticus (AceCas9). AceCas9 depends on a 5'-NNNCC-3' PAM and is more efficient in cleaving negative supercoils than relaxed DNA. Kinetic as well as in vivo activity assays reveal that AceCas9 achieves optimal activity when combined with a guide RNA containing a 24-nucleotide complementarity region. The cytosine-specific, DNA topology-sensitive, and extended guide-dependent properties of AceCas9 may be explored for specific genome editing applications.


Assuntos
Actinobacteria/genética , Sistemas CRISPR-Cas/genética , Citosina/química , DNA/química , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citosina/metabolismo , DNA/genética , DNA/metabolismo , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Escherichia coli/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
6.
Cell Host Microbe ; 18(3): 333-44, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26320998

RESUMO

Invading viral DNA can be recognized by the host cytosolic DNA sensor, cyclic GMP-AMP (cGAMP) synthase (cGAS), resulting in production of the second messenger cGAMP, which directs the adaptor protein STING to stimulate production of type I interferons (IFNs). Although several DNA viruses are sensed by cGAS, viral strategies targeting cGAS are virtually unknown. We report here that Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52, an abundant gammaherpesvirus-specific tegument protein, subverts cytosolic DNA sensing by directly inhibiting cGAS enzymatic activity through a mechanism involving both cGAS binding and DNA binding. Moreover, ORF52 homologs in other gammaherpesviruses also inhibit cGAS activity and similarly bind cGAS and DNA, suggesting conserved inhibitory mechanisms. Furthermore, KSHV infection evokes cGAS-dependent responses that can limit the infection, and an ORF52 null mutant exhibits increased cGAS signaling. Our findings reveal a mechanism through which gammaherpesviruses antagonize host cGAS DNA sensing.


Assuntos
DNA Viral/metabolismo , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA