Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hematol Oncol ; 17(1): 43, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853260

RESUMO

BACKGROUND: Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS: Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1ß. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS: Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS: Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.


Assuntos
Inflamação , Janus Quinase 2 , Transtornos Mieloproliferativos , Neutrófilos , Animais , Neutrófilos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Calreticulina/genética , Calreticulina/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
2.
Immunity ; 54(12): 2724-2739.e10, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34687607

RESUMO

Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation. However, such indirect modes of action remain to be established. By combining mathematical modeling with intravital 2-photon biosensors of pathogen viability and proliferation, we show that low L. major proliferation results not from direct NO impact on the pathogen but from reduced availability of proliferation-permissive host cells. Although inhibiting NO production increases recruitment of these cells, and thus pathogen proliferation, blocking cell recruitment uncouples the NO effect from pathogen proliferation. Therefore, NO fulfills two distinct functions for L. major containment: permitting direct killing and restricting the supply of proliferation-permissive host cells.


Assuntos
Leishmania major/fisiologia , Leishmaniose/imunologia , Macrófagos/imunologia , Óxido Nítrico/metabolismo , Animais , Processos de Crescimento Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos
3.
Sci Rep ; 11(1): 15071, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302006

RESUMO

Neutrophils represent one of the first immune cell types recruited to sites of infection, where they can control pathogens by phagocytosis and cytotoxic mechanisms. Intracellular pathogens such as Leishmania major can hijack neutrophils to establish an efficient infection. However the dynamic interactions of neutrophils with the pathogen and other cells at the site of the infection are incompletely understood. Here, we have investigated the role of Ly6G, a homolog of the human CD177 protein, which has been shown to interact with cell adhesion molecules, and serves as a bona fide marker for neutrophils in mice. We show that Ly6G deficiency decreases the initial infection rate of neutrophils recruited to the site of infection. Although the uptake of L. major by subsequently recruited monocytes was tightly linked with the concomitant uptake of neutrophil material, this process was not altered by Ly6G deficiency of the neutrophils. Instead, we observed by intravital 2-photon microscopy that Ly6G-deficient neutrophils entered the site of infection with delayed initial recruitment kinetics. Thus, we conclude that by promoting neutrophils' ability to efficiently enter the site of infection, Ly6G contributes to the early engagement of intracellular pathogens by the immune system.


Assuntos
Antígenos Ly/sangue , Leishmania major/genética , Leishmaniose Cutânea/sangue , Neutrófilos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Leishmania major/patogenicidade , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Camundongos , Monócitos/parasitologia , Infiltração de Neutrófilos/genética , Neutrófilos/parasitologia , Neutrófilos/patologia , Fagocitose/genética , Pele/parasitologia , Pele/patologia
4.
Cytometry A ; 97(5): 458-470, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31777152

RESUMO

During infections, interactions between host immune cells and the pathogen occur in distinct anatomical locations and along defined time scales. This can best be assessed in the physiological context of an infection in the living tissue. Consequently, intravital imaging has enabled us to dissect the critical phases and events throughout an infection in real time in living tissues. Specifically, advances in visualizing specific cell types and individual pathogens permitted tracking the early events of tissue invasion of the pathogen, cellular interactions involved in the induction of the immune response as well the events implicated in clearance of the infection. In this respect, two vantage points have evolved since the initial employment of this technique in the field of infection biology. On the one hand, strategies acquired by the pathogen to establish within the host and circumvent or evade the immune defenses have been elucidated. On the other hand, analyzing infections from the immune system's perspective has led to insights into the dynamic cellular interactions that are involved in the initial recognition of the pathogen, immune induction as well as effector function delivery and immunopathology. Furthermore, an increasing interest in probing functional parameters in vivo has emerged, such as the analysis of pathogen reactivity to stress conditions imposed by the host organism in order to mediate clearance upon pathogen encounter. Here, we give an overview on recent intravital microscopy findings of host-pathogen interactions along the course of an infection, from both the immune system's and pathogen's perspectives. We also discuss recent developments and future perspectives in extracting intravital information beyond the localization of pathogens and their interaction with immune cells. Such reporter systems on the pathogen's physiological state and immune cell functions may prove useful in dissecting the functional dynamics of host-pathogen interactions. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Interações Hospedeiro-Patógeno , Microscopia Intravital
5.
Sci Rep ; 7(1): 8358, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827723

RESUMO

The outcome of T cell activation is determined by mechanisms that balance Ca2+ influx and clearance. Here we report that murine CD4 T cells lacking Neuroplastin (Nptn -/-), an immunoglobulin superfamily protein, display elevated cytosolic Ca2+ and impaired post-stimulation Ca2+ clearance, along with increased nuclear levels of NFAT transcription factor and enhanced T cell receptor-induced cytokine production. On the molecular level, we identified plasma membrane Ca2+ ATPases (PMCAs) as the main interaction partners of Neuroplastin. PMCA levels were reduced by over 70% in Nptn -/- T cells, suggesting an explanation for altered Ca2+ handling. Supporting this, Ca2+ extrusion was impaired while Ca2+ levels in internal stores were increased. T cells heterozygous for PMCA1 mimicked the phenotype of Nptn -/- T cells. Consistent with sustained Ca2+ levels, differentiation of Nptn -/- T helper cells was biased towards the Th1 versus Th2 subset. Our study thus establishes Neuroplastin-PMCA modules as important regulators of T cell activation.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Glicoproteínas de Membrana/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/fisiologia , Linfócitos T/fisiologia , Animais , Sinalização do Cálcio , Diferenciação Celular , Núcleo Celular , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia
6.
Cell Death Differ ; 24(2): 371-383, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28009354

RESUMO

Deregulated proliferation is key to tumor progression. Although unrestricted proliferation of solid tumor cells correlates with the cold-shock protein Y-box (YB)-binding protein-1 accumulation in the nuclei, little is known about its expression and function in hematopoietic malignancies, such as T-cell acute lymphoblastic leukemia (T-ALL). Here we show that YB-1 protein is highly enriched in the nuclei of activated T cells and malignant human T-ALL cell lines but not in resting T cells. YB-1 S102 mutations that either mimic (S102D) or prevent phosphorylation (S102N) led to accumulation of YB-1 in the nucleus of T cells or strictly excluded it, respectively. Inactivation of ribosomal S6 kinase (RSK) was sufficient to abrogate T-cell and T-ALL cell proliferation, suggesting that RSK mediates cell-cycle progression, possibly dependent on YB-1-phosphorylation. Indeed, phosphomimetic YB-1S102D enhanced proliferation implying that S102 phosphorylation is a prerequisite for malignant T-cell proliferation. At initial diagnosis of T-ALL, YB-1 localization was significantly altered in the nuclei of tumor blasts derived from bone marrow or peripheral blood. Our data show deregulated YB-1 in the nucleus as a yet unreported characteristic of T-ALL blasts and may refine strategies to restrict progression of hematopoietic tumors.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Adolescente , Adulto , Idoso , Benzopiranos/farmacologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Enterotoxinas/toxicidade , Feminino , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Monossacarídeos/farmacologia , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteína 1 de Ligação a Y-Box/antagonistas & inibidores , Proteína 1 de Ligação a Y-Box/genética , Adulto Jovem
7.
J Neurosci ; 34(4): 1234-47, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453315

RESUMO

Dopaminergic neurotransmission in primary auditory cortex (AI) has been shown to be involved in learning and memory functions. Moreover, dopaminergic projections and D1/D5 receptor distributions display a layer-dependent organization, suggesting specific functions in the cortical circuitry. However, the circuit effects of dopaminergic neurotransmission in sensory cortex and their possible roles in perception, learning, and memory are largely unknown. Here, we investigated layer-specific circuit effects of dopaminergic neuromodulation using current source density (CSD) analysis in AI of Mongolian gerbils. Pharmacological stimulation of D1/D5 receptors increased auditory-evoked synaptic currents in infragranular layers, prolonging local thalamocortical input via positive feedback between infragranular output and granular input. Subsequently, dopamine promoted sustained cortical activation by prolonged recruitment of long-range corticocortical networks. A detailed circuit analysis combining layer-specific intracortical microstimulation (ICMS), CSD analysis, and pharmacological cortical silencing revealed that cross-laminar feedback enhanced by dopamine relied on a positive, fast-acting recurrent corticoefferent loop, most likely relayed via local thalamic circuits. Behavioral signal detection analysis further showed that activation of corticoefferent output by infragranular ICMS, which mimicked auditory activation under dopaminergic influence, was most effective in eliciting a behaviorally detectable signal. Our results show that D1/D5-mediated dopaminergic modulation in sensory cortex regulates positive recurrent corticoefferent feedback, which enhances states of high, persistent activity in sensory cortex evoked by behaviorally relevant stimuli. In boosting horizontal network interactions, this potentially promotes the readout of task-related information from cortical synapses and improves behavioral stimulus detection.


Assuntos
Córtex Auditivo/fisiologia , Dopamina/metabolismo , Potenciais Evocados Auditivos/fisiologia , Retroalimentação Fisiológica/fisiologia , Transmissão Sináptica/fisiologia , Estimulação Acústica , Animais , Eletrofisiologia , Gerbillinae , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA