Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 7(6): 1235-1246, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37342759

RESUMO

Atmospheric simulation chambers continue to be indispensable tools for research in the atmospheric sciences. Insights from chamber studies are integrated into atmospheric chemical transport models, which are used for science-informed policy decisions. However, a centralized data management and access infrastructure for their scientific products had not been available in the United States and many parts of the world. ICARUS (Integrated Chamber Atmospheric data Repository for Unified Science) is an open access, searchable, web-based infrastructure for storing, sharing, discovering, and utilizing atmospheric chamber data [https://icarus.ucdavis.edu]. ICARUS has two parts: a data intake portal and a search and discovery portal. Data in ICARUS are curated, uniform, interactive, indexed on popular search engines, mirrored by other repositories, version-tracked, vocabulary-controlled, and citable. ICARUS hosts both legacy data and new data in compliance with open access data mandates. Targeted data discovery is available based on key experimental parameters, including organic reactants and mixtures that are managed using the PubChem chemical database, oxidant information, nitrogen oxide (NOx) content, alkylperoxy radical (RO2) fate, seed particle information, environmental conditions, and reaction categories. A discipline-specific repository such as ICARUS with high amounts of metadata works to support the evaluation and revision of atmospheric model mechanisms, intercomparison of data and models, and the development of new model frameworks that can have more predictive power in the current and future atmosphere. The open accessibility and interactive nature of ICARUS data may also be useful for teaching, data mining, and training machine learning models.

2.
Environ Sci Technol ; 56(22): 15408-15416, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326040

RESUMO

Indoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources. Use of a chlorine-based cleaner was a source of several photolabile reactive chlorine compounds, including ClNO2 and Cl2. During cleaning events, photolysis rates for these two compounds were up to 0.0023 pptv min-1, acting as a source of chlorine atoms even in this low-light indoor environment. Unrelated to cleaning events, elevated ClNO2 was often observed during daytime and lost to ventilation. The nitrate radical (NO3), which is rapidly photolyzed outdoors during daytime, may persist in low-light indoor environments. With negligible photolysis, loss rates of NO3 indoors were dominated by bimolecular reactions. At times with high NO2 and O3 ventilated from outdoors, N2O5 was observed. Elevated ClNO2 measured concurrently suggests the formation through heterogeneous reactions, acting as an additional source of reactive chlorine within the athletic facility and outdoors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Esportes , Humanos , Cloro , Nitrogênio , Poluentes Atmosféricos/análise , Halogênios , Cloretos
3.
Indoor Air ; 31(5): 1323-1339, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33337567

RESUMO

Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3 , H2 O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Detergentes , Exercício Físico , Compostos Orgânicos Voláteis , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Cloro , Monitoramento Ambiental , Humanos , Espectrometria de Massas , Esportes , Universidades
4.
Environ Sci Technol ; 53(22): 13053-13063, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31652057

RESUMO

The chemical composition of indoor air at the University of Colorado, Boulder art museum was measured by a suite of gas- and particle-phase instruments. Over 80% of the total observed organic carbon (TOOC) mass (100 µg m-3) consisted of reduced compounds (carbon oxidation state, OSC < -0.5) with high volatility (log10 C* > 7) and low carbon number (nC < 6). The museum TOOC was compared to other indoor and outdoor locations, which increased according to the following trend: remote < rural ≤ urban < indoor ≤ megacity. The museum TOOC was comparable to a university classroom and 3× less than residential environments. Trends in the total reactive flux were remote < indoor < rural < urban < megacity. High volatile organic compound (VOC) concentrations compensated low oxidant concentrations indoors to result in an appreciable reactive flux. Total hydroxyl radical (OH), ozone (O3), nitrate radical (NO3), and chlorine atom (Cl) reactivities for each location followed a similar trend to TOOC. High human occupancy events increased all oxidant reactivities in the museum by 65-125%. The lifetimes of O3, NO3, OH, and Cl reactivities were 13 h, 15 h, 23 days, and 189 days, respectively, corresponding to over 88% of indoor VOC oxidant reactivity being consumed outdoors after ventilation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Carbono , Monitoramento Ambiental , Humanos , Ventilação
5.
Environ Sci Technol ; 53(9): 4794-4802, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990681

RESUMO

A 6-week study was conducted at the University of Colorado Art Museum, during which volatile organic compounds (VOCs), carbon dioxide (CO2), ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), other trace gases, and submicron aerosol were measured continuously. These measurements were then analyzed using a box model to quantify the rates of major processes that transformed the composition of the air. VOC emission factors were quantified for museum occupants and their activities. The deposition of VOCs to surfaces was quantified across a range of VOC saturation vapor concentrations ( C*) and Henry's Law constants ( H) and determined to be a major sink for VOCs with C* < 108 µg m-3 and H > 102 M atm-1. The reaction rates of VOCs with O3, OH radicals, and nitrate (NO3) radicals were quantified, with unsaturated and saturated VOCs having oxidation lifetimes of >5 and >15 h, making deposition to surfaces and ventilation the dominant VOC sinks in the museum. O3 loss rates were quantified inside a museum gallery, where reactions with surfaces, NO, occupants, and NO2 accounted for 62%, 31%, 5%, and 2% of the O3 sink. The measured concentrations of acetic acid, formic acid, NO2, O3, particulate matter, sulfur dioxide, and total VOCs were below the guidelines for museums.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Museus , Material Particulado , Universidades
6.
Physiol Genomics ; 35(2): 133-44, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18682574

RESUMO

The Ca(2+) channel beta-subunits, encoded by CACNB genes 1-4, are membrane-associated guanylate kinase (MAGUK) proteins. As auxiliary subunits of voltage-gated Ca(2+) channels, the beta-subunits facilitate membrane trafficking of the pore-forming alpha1 subunits and regulate voltage-dependent channel gating. In this report, we investigate whether two zebrafish beta4 genes, beta4.1 and beta4.2, have diverged in structure and function over time. Comparative expression analyses indicated that beta4.1 and beta4.2 were expressed in separable domains within the developing brain and other tissues. Alternative splicing in both genes was subject to differential temporal and spatial regulation, with some organs expressing different subsets of beta4.1 and beta4.2 transcript variants. We used several genomic tools to identify and compare predicted cDNAs for eight teleost and five tetrapod beta4 genes. Teleost species had either one or two beta4 paralogs, whereas each tetrapod species contained only one. Teleost beta4.1 and beta4.2 genes had regions of sequence divergence, but compared with tetrapod beta4s, they exhibited similar exon/intron structure, strong conservation of residues involved in alpha1 subunit binding, and similar 5' alternative splicing. Phylogenetic results are consistent with the duplicate teleost beta4 genes resulting from the teleost whole genome duplication. Following duplication, the beta4.1 genes have evolved faster than beta4.2 genes. We identified disproportionately large second and third introns in several beta4 genes, which we propose may provide regulatory elements contributing to their differential tissue expression. In sum, both mRNA expression data and phylogenetic analysis support the evolutionary divergence of beta4.1 and beta4.2 subunit function.


Assuntos
Canais de Cálcio/classificação , Canais de Cálcio/genética , Genoma , Processamento Alternativo , Sequência de Aminoácidos , Animais , Canais de Cálcio/metabolismo , Evolução Molecular , Expressão Gênica , Genômica , Humanos , Hibridização In Situ , Íntrons , Dados de Sequência Molecular , Filogenia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Vertebrados , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA