Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 249, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431872

RESUMO

Airway mucus is essential for lung defense, but excessive mucus in asthma obstructs airflow, leading to severe and potentially fatal outcomes. Current asthma treatments have minimal effects on mucus, and the lack of therapeutic options stems from a poor understanding of mucus function and dysfunction at a molecular level and in vivo. Biophysical properties of mucus are controlled by mucin glycoproteins that polymerize covalently via disulfide bonds. Once secreted, mucin glycopolymers can aggregate, form plugs, and block airflow. Here we show that reducing mucin disulfide bonds disrupts mucus in human asthmatics and reverses pathological effects of mucus hypersecretion in a mouse allergic asthma model. In mice, inhaled mucolytic treatment loosens mucus mesh, enhances mucociliary clearance, and abolishes airway hyperreactivity (AHR) to the bronchoprovocative agent methacholine. AHR reversal is directly related to reduced mucus plugging. These findings establish grounds for developing treatments to inhibit effects of mucus hypersecretion in asthma.


Assuntos
Dissulfetos/metabolismo , Hipersensibilidade/fisiopatologia , Pulmão/fisiopatologia , Muco/metabolismo , Adolescente , Adulto , Animais , Asma/metabolismo , Asma/fisiopatologia , Modelos Animais de Doenças , Expectorantes/farmacologia , Feminino , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
2.
Eur J Pharm Biopharm ; 148: 118-125, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31981693

RESUMO

Artificial vitreous humor holds immense potential for use in in vitro intravitreal drug delivery assays. In this study, we investigated rheological properties and drug or nanoparticle migration in hyaluronic acid (HA) - agar based hydrogels and compared these characteristics with bovine vitreous humor. Gel compositions identified in literature containing HA (0.7-5.0 mg/ml) and agar (0.95-4.0 mg/ml) were classified as either high (VH), medium (VM) or low (VL) polymer load. Viscoelastic behavior was evaluated using oscillatory rheology, and migration of differently sized and charged polystyrene nanoparticles (NPs) through the different gels was determined via multiple particle tracking. Comparable rheological behaviour was observed between VL and bovine vitreous. Tracking evaluations revealed that increasing particle size and gel viscosity slowed NP migration. Additionally, 100 nm anionic NPs migrated slower than neutral NPs in VL and VM, while cationic NPs were immobile in all gels. Finally, distribution and clearance of sodium fluorescein was used to model drug mobility through the gels using a custom-built eye model. Flow and angular movement only influenced drug migration in VL and VM, but not VH. Finally, VL and VM demonstrated to have the most similar sodium fluorescein clearance to that of bovine vitreous humor. Together, these evaluations demonstrate that low viscosity HA-agar gels can be used to approximate nanoparticle and drug migration through biological vitreous humor.


Assuntos
Ágar/química , Ácido Hialurônico/química , Nanopartículas , Corpo Vítreo/química , Animais , Bovinos , Sistemas de Liberação de Medicamentos , Fluoresceína/metabolismo , Hidrogéis , Polímeros/química , Reologia , Viscosidade , Corpo Vítreo/metabolismo
3.
Eur Respir J ; 54(2)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31164433

RESUMO

Perturbations in airway mucus properties contribute to lung function decline in patients with chronic obstructive pulmonary disease (COPD). While alterations in bulk mucus rheology have been widely explored, microscopic mucus properties that directly impact on the dynamics of microorganisms and immune cells in the COPD lungs are yet to be investigated.We hypothesised that a tightened mesh structure of spontaneously expectorated mucus (i.e. sputum) would contribute to increased COPD disease severity. Here, we investigated whether the mesh size of COPD sputum, quantified by muco-inert nanoparticle (MIP) diffusion, correlated with sputum composition and lung function measurements.The microstructure of COPD sputum was assessed based on the mean squared displacement (MSD) of variously sized MIPs measured by multiple particle tracking. MSD values were correlated with sputum composition and spirometry. In total, 33 samples collected from COPD or non-COPD individuals were analysed.We found that 100 nm MIPs differentiated microstructural features of COPD sputum. The mobility of MIPs was more hindered in sputum samples from patients with severe COPD, suggesting a tighter mucus mesh size. Specifically, MSD values inversely correlated with lung function.These findings suggest that sputum microstructure may serve as a novel risk factor for COPD progression and severity.


Assuntos
Nanopartículas/química , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/efeitos adversos , Escarro , Difusão , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Reologia , Fatores de Risco , Espirometria
4.
Biomaterials ; 34(28): 6922-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23769419

RESUMO

Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that administration of hypotonic solutions would induce fluid uptake that could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We found that hypotonic formulations markedly increased the rate at which small molecule drugs and mucoinert nanoparticles (mucus-penetrating particles, or MPP), but not conventional mucoadhesive nanoparticles (CP), reached the vaginal epithelial surface in vivo in mice. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that drugs or MPP in isotonic formulations failed to reach efficiently. However, hypotonic formulations caused unencapsulated "free" drugs to be drawn through the epithelium, reducing vaginal retention. In contrast, hypotonic formulations caused MPP to accumulate rapidly and uniformly on vaginal surfaces, ideally positioned for localized sustained drug delivery. Using a mouse model of vaginal genital herpes (HSV-2) infection, we found that hypotonic delivery of free drug led to improved immediate protection, but diminished longer-term protection. In contrast, as we previously demonstrated, hypotonic delivery of drug via MPP led to better long-term retention and protection in the vagina. Importantly, we demonstrate that slightly hypotonic formulations provided rapid and uniform delivery of MPP to the entire vaginal surface, thus enabling formulations with minimal risk of epithelial toxicity. Hypotonic formulations for vaginal drug delivery via MPP may significantly improve prevention and treatment of reproductive tract diseases and disorders.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Vagina/metabolismo , Administração Intravaginal , Animais , Anti-Infecciosos/administração & dosagem , Química Farmacêutica , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA