Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 22(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33286900

RESUMO

In this paper, data-transmission using the nonlinear Fourier transform for jointly modulated discrete and continuous spectra is investigated. A recent method for purely discrete eigenvalue removal at the detector is extended to signals with additional continuous spectral support. At first, the eigenvalues are sequentially detected and removed from the jointly modulated received signal. After each successful removal, the time-support of the resulting signal for the next iteration can be narrowed, until all eigenvalues are removed. The resulting truncated signal, ideally containing only continuous spectral components, is then recovered by a standard NFT algorithm. Numerical simulations without a fiber channel show that, for jointly modulated discrete and continuous spectra, the mean-squared error between transmitted and received eigenvalues can be reduced using the eigenvalue removal approach, when compared to state-of-the-art detection methods. Additionally, the computational complexity for detection of both spectral components can be decreased when, by the choice of the modulated eigenvalues, the time-support after each removal step can be reduced. Numerical simulations are also carried out for transmission over a Raman-amplified, lossy SSMF channel. The mutual information is approximated and the eigenvalue removal method is shown to result in achievable rate improvements.

2.
Opt Express ; 23(7): 9183-91, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968752

RESUMO

Lower bounds on mutual information (MI) of long-haul optical fiber systems for hard-decision and soft-decision decoding are studied. Ready-to-use expressions to calculate the MI are presented. Extensive numerical simulations are used to quantify how changes in the optical transmitter, receiver, and channel affect the achievable transmission rates of the system. Special emphasis is put to the use of different quadrature amplitude modulation formats, channel spacings, digital back-propagation schemes and probabilistic shaping. The advantages of using MI over the prevailing Q-factor as a figure of merit of coded optical systems are also highlighted.

3.
Opt Express ; 20(10): 10859-69, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565711

RESUMO

The complexities of common equalizer schemes are analytically analyzed in this paper in terms of complex multiplications per bit. Based on this approach we compare the complexity of mode-division multiplexed digital signal processing algorithms with different numbers of multiplexed modes in terms of modal dispersion and distance. It is found that training symbol based equalizers have significantly lower complexity compared to blind approaches for long-haul transmission. Among the training symbol based schemes, OFDM requires the lowest complexity for crosstalk compensation in a mode-division multiplexed receiver. The main challenge for training symbol based schemes is the additional overhead required to compensate modal crosstalk, which increases the data rate. In order to achieve 2000 km transmission, the effective modal dispersion must therefore be below 6 ps/km when the OFDM specific overhead is limited to 10%. It is concluded that for few mode transmission systems the reduction of modal delay is crucial to enable long-haul performance.

4.
Opt Express ; 19(26): B64-8, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274082

RESUMO

We demonstrate a 93.8-Gb/s real-time optical OFDM transmitter with 1024-point IFFT using polarization-multiplexing and 4-QAM modulation. This is the highest IFFT size implemented for OFDM to our knowledge. The limited resources of FPGA make it challenging to place and route such a high size IFFT. The implementation penalty of the real time transmitter compared to the case where FPGAs are used as an arbitrary waveform generators increases up to 2 dB for BER of 7x10(-4). An optical back-back measurement showed required OSNR of 26.5 dB for a BER of 10(-3).

5.
Opt Express ; 17(5): 3226-41, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259159

RESUMO

Using an alternative approach for evaluating the Bit-Error Rate (BER), we present a numerical and experimental investigation of the performance of phase-modulated optical communication systems in the presence of nonlinear phase noise and dispersion. The numerical method is based on the well known Karhunen-Lo;eve expansion combined with a linearization technique of the Nonlinear Schr odinger Equation (NLSE) to account for the nonlinear interaction between signal and noise. Our numerical results show a good agreement with experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA